數學課程標准中的數學思想
㈠ 中學數學課程標准中,關於數學思想方法的修改部分有哪些
1、 注重概念的形成過程。從實踐情況來看,數學概念的教學相比其他內容來講難度要更大一些。每一個數學概念都有其產生、形成並不斷完善的過程,在教學中如何扎扎實實地引導學生完成概念形成的每一個步驟,而不僅僅是在字面上逐字逐句地再現概念,如果沒有經歷概念形成的全過程,學生往往很難全面正確地理解概念,很容易造成對概念的片面、孤立甚至是錯誤的理解。具體做法可以通過典型例子的分析和學生自主探索活動,使學生理解數學概念、結論逐步形成的過程,比如在講無理數的概念時,要讓學生在問題的引導下開展探索活動,經歷認識過程,從中感知無限不循環小數的存在性,感受引入新數的必要性,體會理性思維的精神,追尋數學發展的歷史足跡,把數學的學術形態轉化為學生易於接受的教育形態。
2、 數學中有許多問題都具有生活背景和意義,這需要教師「沉入」教材「細細揣摩」,在教學中發掘問題的內在聯系,抽象問題的本質,進而用數學語言(符號)來表達問題的實質。比如「有序數對」的提出就來源於生活,可設計相關的活動,讓學生獲得這方面的經驗,感受數學與生活的聯系,當然,還必須進行數學的想像和理性的思考,這樣學生學數學,對數學本性會有更深的認識。
3、 在解題過程中要讓學生領悟、提煉、概括出數學思想方法。又如在「平面直角坐標系」這一章中,就可以貫穿數形結合的思想,如點與坐標、兩點間距離公式、直線的代數表示形式、用坐標變化描述點的運動等都表明了數與形之間的聯系。當然初中數學中所蘊涵的思想方法也是很豐富的,任何一個數學思想也不是在一次教學活動中就能落實到位的,有一個逐步滲透、貫徹、落實、領會的長期的過程。
4、 培養學生對知識的遷移能力,通過解題後的反思,讓學生「領悟」:數學問題的背景可以千變萬化,而其中運用的數學思想方法往往是相通的。學習數學重在掌握這種具有普遍意義和具有遷移價值的、能反映數學本質的「策略性」知識,注重問題間的類比,使解題反思成為自覺的行動,這樣才能達到舉一反三、有例及類、解一題通一片的目的。
㈡ 九年義務教育數學課程標準的基本理念是什麼
一、基本理念
1.義務教育階段的數學課程應突出體現基礎性、普及性和發展性,使數學教育面向全體學生,實現:
--人人學有價值的數學;
--人人都能獲得必需的數學;
--不同的人在數學上得到不同的發展。
2.數學是人們生活、勞動和學習必不可少的工具,能夠幫助人們處理數據、進行計算、推理和證明,數學模型可以有效地描述自然現象和社會現象;數學為其他科學提供了語言、思想和方法,是一切重大技術發展的基礎;數學在提高人的推理能力、抽象能力、想像力和創造力等方面有著獨特的作用;數學是人類的一種文化,它的內容、思想、方法和語言是現代文明的重要組成部分。
3.學生的數學學習內容應當是現實的、有意義的、富有挑戰性的,這些內容要有利於學生主動地進行觀察、實驗、猜測、驗證、推理與交流等數學活動。內容的呈現應採用不同的表達方式,以滿足多樣化的學習需求。有效的數學學習活動不能單純地依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。由於學生所處的文化環境、家庭背景和自身思維方式的不同,學生的數學學習活動應當是一個生動活潑的、主動的和富有個性的過程。
4.數學教學活動必須建立在學生的認知發展水平和已有的知識經驗基礎之上。教師應激發學生的學習積極性,向學生提供充分從事數學活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數學知識與技能、數學思想和方法,獲得廣泛的數學活動經驗。學生是數學學習的主人,教師是數學學習的組織者、引導者與合作者。
5.評價的主要目的是為了全面了解學生的數學學習歷程,激勵學生的學習和改進教師的教學;應建立評價目標多元、評價方法多樣的評價體系。對數學學習的評價要關注學生學習的結果,更要關注他們學習的過程;要關注學生數學學習的水平,更要關注他們在數學活動中所表現出來的情感與態度,幫助學生認識自我,建立信心。
6.現代信息技術的發展對數學教育的價值、目標、內容以及學與教的方式產生了重大的影響。數學課程的設計與實施應重視運用現代信息技術,特別要充分考慮計算器、計算機對數學學習內容和方式的影響,大力開發並向學生提供更為豐富的學習資源,把現代信息技術作為學生學習數學和解決問題的強有力工具,致力於改變學生的學習方式,使學生樂意並有更多的精力投入到現實的、探索性的數學活動中去。
㈢ 數學課程標準的基本理念包括哪五個方面
《課程標准》提出六個方面的基本理念,這些基本理念主要體現數學教育專關注學生發展這樣一個總體屬目標,以及實現這一目標的兩個基本的策略。
具體表現在以下幾個方面:
(一)著眼於人的發展的數學課程目標
1. 人人學有價值的數學。
2. 人人都能獲得必要的數學。
3. 不同的人在數學上得到不同的發展。
(二)改變數學課程內容的結構與呈現方式。
1.面向全體學生的數學教育應當是學生未來需要的,是具有現實背景的,具有趣味性和富於挑戰的。
2.數學內容的呈現方式應當更多地採取情境化、問題式的方式。以「問題情境—建立模型—解釋應用與拓展」的基本模式開展。
(三)改善數學的學習的方式和評價方式
1.倡導有意義的學習方式:自主探索、親身實踐、合作交流、勇於創新。
2.實行多元性多樣化的評價方式。
㈣ 數學課標中的數學思考是什麼意思
《標准》在「課程目標」的總目標中明確指出:「通過義務教育階段的數學學習,學生能體會數學知識之間┅┅解決問題的能力。」另外,在「知識技能、過程方法、情感態度與價值觀」的三維目標下,數學課程目標雙細化出了「數學思考」,其直接指向的是三維目標中的「過程方法」目標。
所謂數學思考,就是在面臨各種現實的問題情境,特別是非數學問題時,能夠從數學的角度去思考問題,也就是能夠自覺應用數學的知識、方法、思想和觀念去發現其中所存在的數學現象和數學規律,並能夠運用數學的知識和數學的思想方法去解決問題。數學思考作為一種「過程性目標」,實際上是讓學生經歷「做數學」的過程,也就是讓學生經歷發現和提出問題、分析和解決問題的過程。數學思考是學生進行數學學習的核心;讓學生經歷數學思考的過程,是喚起學生對數學的好廳心,激發並維持學生主動和自主學習的根本保證;是提高學生發現和提出問題、分析和解決問題能力的有力措施;是培育學生實踐能力和創新意識的有效途徑。
數學思考包括的內容:
1、建立數感、符號意識和空間觀念,初步形成幾何直觀和運算能力,發展形象思維和抽象思維。
2、體會統計方法的意義,發展數據分析觀念,感受隨機現象。
3、在參與觀察、實驗、猜想、證明、綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。
4、學會獨立思考,體會數學的基本思想和思維方式。
從2001年進行新課改以來,到2011年版新課標的頒布,我們的數學教材發生了很多變化,無論從形式還是到內容都充分地關注了學生的數學思考。小版本變成了大版本,版面設計清爽美觀、圖文並茂、裝幀精美、文字准確,能很好地吸引小學生閱讀學習,激發學生的數學思考;從教學內容看,新的數學教材內容豐富,重視學生的經驗和體驗,根據小學生學習數學的規律,體現了合理的教學順序和節奏,為培養學生解決問題的能力提供了清晰的思路和步驟,教給了學生解決問題的一般方法,教材中呈現的是:知道了什麼,即理解現實的問題情境,發現要解決的數學問題;怎樣解答,即分析問題找到解決的方案並解決;解答正確嗎,即對解答的結果和解決的方法進行檢驗、回顧與反思。每冊數學教材都設計一次綜合實踐活動,從一年級下冊教材開始設置「數學廣角」單元,利用直觀操作等手段滲透重要的數學思想方法。每單元內容結束後,設置過程性評價板塊,建立成長小檔案,為學生提供自我反思與評價的機會,使學生獲得學習數學的良好體驗,形成良好的學習習慣。學期末結束後,設置了自我評價表,圍繞學習表現進行自我評價。所有這些,不僅利於落實「四基、四能」目標,也更利於落實「數學思考」目標。
關注學生數學思考的過程,能更好地喚起學生對數學的好奇心,激發並維持學生主動、自主學習的積極性。真正有效地讓學生進行數學思考,教師是真正的執行者和落實者。首先教師必須真正把握教材明確編者意圖,結合不同的教學內容將「數學思考」目標落實到課堂教學中。如數與代數的內容應側重於建立數感、符號意識、初步形成運算能力、體會模型思想,發展形象思維和抽象思維;空間與圖形的內容應側重於幾何直觀和空間觀念的培養;統計與概率的內容應側重於發展數據分析觀念;綜合與實踐的內容應側重於應用意識和創新意識的培養。推理能力的培養應該滲透在數學課程的各個領域內容里。當然,年段不同,側重點也不同。低年段側重於體驗,重在積累數學思考經驗;高年段重在思考的深度,培養學生各種數學能力。其次,教師在進行教學設計時,還要注意以下幾點:
1、有效創設問題情境
問題是數學的心臟,只有好的問題才能引發學生的積極思考。教師要認真創設具有新穎性、挑戰性和可行性的問題情境,激發學生的數學思考。教材基本上每部分內容都創設了很好的情境,教師要充分有效地使用。另外,現實的、生活的題材可以作為問題情境,數學本身的內容也可以作為問題情境。
2、精心設計課堂提問
教師要精心設計課堂提問,因為課堂提問是支撐學生數學思考和整個教學活動的重要內容,是教師激發學生數學思考的直接動力。反思我們的數學課堂提問:有的問題重復耽誤時間;有的問題指向性不明確;有的問題細小瑣碎;有的問題不夠准確;尤其是有的問題缺乏思考性。那麼教師應怎樣精心設計課堂提問呢?我想,教師設計課堂提問時,一定要結合教學內容、學生實際,在新舊知識的連接處提問;在知識的對比處提問;在知識的變化處提問;在總結知識的規律處提問,提問時要注意問題要由易到難、層層深入、環環相扣等。
3、為學生提供充分思考的時間和空間
我們在聽課的過程中發現,有些課堂教學師生是在簡單的對話中進行的,尤其是在觀察、發現、概括、總結出方法、規律時,教師總是著急,不等學生說出自己的想法就不讓學生說或提示代替學生說,沒有為學生提供充分思考的時間和空間。教學中,教師要為學生提供充分的思考時間和空間,要讓學生先獨立思考,不要直接給出問題的思考思路;不要輕易否定學生的想法;要適時把學生提出的問題或具體想法呈現給其他學生,讓大家共同交流和探究。窮人的孩子早當家,家長放手的孩子自立、自理能力強,就是讓孩子親身經歷了很多。同樣,課堂上教師只有放手、捨得,才會讓學生去充分地經歷體驗、充分地進行數學思考。還要給學生創造寬松的課堂氛圍,培養學生敢問、愛問、會問,從而激發學生的數學思考。
4、設計富有思考性的練習題
練習題一般分為基本練習、綜合練習和拓展練習。教師可以結合教學內容、學生實際每節課設計一道或兩道更有思考性、挑戰性的綜合練習或拓展題,調動學生的學習興趣,激活學生的思維,提升學生的數學思考。
總之,我們的數學課堂教學,要給學生努力創設良好的思考環境,引發學生的數學思考,不斷促進學生的數學思考力度,感受數學思考的魅力,使學生成為會數學思考、樂於數學思考的人,真正使我們的孩子受到良好的數學教育,形成良好的數學素養!
㈤ 新課標制定中對於「數學思想、數學方法與數學思想方法」是如何界定,他們之間有著怎樣的聯系和區別
數學思想方法是從方法論的角度對數學思想進行探索、論證,從而形成科學、發展的數學思想,數學思想對數學思維起到統攝、組織的作用,數學思維的成型就形成了數學方法。
㈥ 數學課標中「基本思想」和「基本活動經驗」具體指什麼
課標中的數學思想
《課標》(修訂稿)把「雙基」改變「四基」,即改為關於數學的: 基礎知識、基本技能、基本思想、基本活動經驗。
「基本思想」主要是指演繹和歸納,這應當是整個數學教學的主線, 是最上位的思想。 演繹和歸納不是矛盾的,其教學也不是矛盾的, 通過歸納來預測結果,然後通過演繹來驗證結果。 在具體的問題中,會涉及到數學抽象、數學模型、等量替換、數形結合等數學思想, 但最上位的思想還是演繹和歸納。 之所以用「基本思想」而不用基本思想方法,就是要與換元法、遞歸法、配方法等具體的數學方法區別。 每一個具體的方法可能是重要的,但它們是個案,不具有一般性。 作為一種思想來掌握是不必要的,經過一段時間,學生很可能就忘卻了。 這里所說的思想,是大的思想, 是希望學生領會之後能夠終生受益的那種思想方法。
史寧中教授認為:演繹推理的主要功能在於驗證結論,而不在於發現結論。 我們缺少的是根據情況「預測結果」的能力;根據結果「探究成因」的能力。而這正是歸納推理的能力。
就方法而言,歸納推理十分龐雜,枚舉法、歸納法、類比法、統計推斷、因果分析,以及觀察實驗、比較分類、綜合分析等均可被包容。與演繹推理相反,歸納推理是一種「從特殊到一般的推理」。 藉助歸納推理可以培養學生「預測結果」和「探究成因」的能力,是演繹推理不可比擬的。從方法論的角度考慮,「雙基教育」缺少歸納能力的培養,對學生未來走向社會不利,對培養創新性人才不利。
一、什麼是小學數學思想方法
所謂的數學思想,是指人們對數學理論與內容的本質認識,是從某些具體數學認識過程中提煉出的一些觀點,它揭示了數學發展中普遍的規律,它直接支配著數學的實踐活動,這是對數學規律的理性認識。
所謂的數學方法,就是解決數學問題的方法,即解決數學具體問題時所採用的方式、途徑和手段,也可以說是解決數學問題的策略。
數學思想是宏觀的,它更具有普遍的指導意義。而數學方法是微觀的,它是解決數學問題的直接具體的手段。一般來說,前者給出了解決問題的方向,後者給出了解決問題的策略。但由於小學數學內容比較簡單,知識最為基礎,所以隱藏的思想和方法很難截然分開,更多的反映在聯系方面,其本質往往是一致的。如常用的分類思想和分類方法,集合思想和交集方法,在本質上都是相通的,所以小學數學通常把數學思想和方法看成一個整體概念,即小學數學思想方法。
二、小學數學思想方法有哪些?
1、對應思想方法
對應是人們對兩個集合因素之間的聯系的一種思想方法,小學數學一般是一一對應的直觀圖表,並以此孕伏函數思想。如直線上的點(數軸)與表示具體的數是一一對應。
2、假設思想方法
假設是先對題目中的已知條件或問題作出某種假設,然後按照題中的已知條件進行推算,根據數量出現的矛盾,加以適當調整,最後找到正確答案的一種思想方法。假設思想是一種有意義的想像思維,掌握之後可以使要解決的問題更形象、具體,從而豐富解題思路。
3、比較思想方法
比較思想是數學中常見的思想方法之一,也是促進學生思維發展的手段。在教學分數應用題中,教師善於引導學生比較題中已知和未知數量變化前後的情況,可以幫助學生較快地找到解題途徑。
4、符號化思想方法
用符號化的語言(包括字母、數字、圖形和各種特定的符號)來描述數學內容,這就是符號思想。如數學中各種數量關系,量的變化及量與量之間進行推導和演算,都是用小小的字母表示數,以符號的濃縮形式表達大量的信息。如定律、公式、等。
5、類比思想方法
類比思想是指依據兩類數學對象的相似性,有可能將已知的一類數學對象的性質遷移到另一類數學對象上去的思想。如加法交換律和乘法交換律、長方形的面積公式、平行四邊形面積公式和三角形面積公式。類比思想不僅使數學知識容易理解,而且使公式的記憶變得順水推舟的自然和簡潔。
6、轉化思想方法
轉化思想是由一種形式變換成另一種形式的思想方法,而其本身的大小是不變的。如幾何的等積變換、解方程的同解變換、公式的變形等,在計算中也常用到甲÷乙=甲×1/乙。
7、分類思想方法
分類思想方法不是數學獨有的方法,數學的分類思想方法體現對數學對象的分類及其分類的標准。如自然數的分類,若按能否被2整除分奇數和偶數;按約數的個數分質數和合數。又如三角形可以按邊分,也可以按角分。不同的分類標准就會有不同的分類結果,從而產生新的概念。對數學對象的正確、合理分類取決於分類標準的正確、合理性,數學知識的分類有助於學生對知識的梳理和建構。
8、集合思想方法
集合思想就是運用集合的概念、邏輯語言、運算、圖形等來解決數學問題或非純數學問題的思想方法。小學採用直觀手段,利用圖形和實物滲透集合思想。在講述公約數和公倍數時採用了交集的思想方法。
9、數形結合思想方法
數和形是數學研究的兩個主要對象,數離不開形,形離不開數,一方面抽象的數學概念,復雜的數量關系,藉助圖形使之直觀化、形象化、簡單化。另一方面復雜的形體可以用簡單的數量關系表示。在解應用題中常常藉助線段圖的直觀幫助分析數量關系。
10、統計思想方法:
小學數學中的統計圖表是一些基本的統計方法,求平均數應用題是體現出數據處理的思想方法。
11、極限思想方法:
事物是從量變到質變的,極限方法的實質正是通過量變的無限過程達到質變。在講「圓的面積和周長」時,「化圓為方」「化曲為直」的極限分割思路,在觀察有限分割的基礎上想像它們的極限狀態,這樣不僅使學生掌握公式還能從曲與直的矛盾轉化中萌發了無限逼近的極限思想。
12、代換思想方法:
他是方程解法的重要原理,解題時可將某個條件用別的條件進行代換。如學校買了4張桌子和9把椅子,共用去504元,一張桌子和3把椅子的價錢正好相等,桌子和椅子的單價各是多少?
13、可逆思想方法:
它是邏輯思維中的基本思想,當順向思維難於解答時,可以從條件或問題思維尋求解題思路的方法,有時可以借線段圖逆推。如一輛汽車從甲地開往乙地,第一小時行了全程的1/7,第二小時比第一小時多行了16千米,還有94千米,求甲乙之距。
14、化歸思維方法:
把有可能解決的或未解決的問題,通過轉化過程,歸結為一類以便解決可較易解決的問題,以求得解決,這就是「化歸」。而數學知識聯系緊密,新知識往往是舊知識的引申和擴展。讓學生面對新知會用化歸思想方法去思考問題,對獨立獲得新知能力的提高無疑是有很大幫助。
15、變中抓不變的思想方法:
在紛繁復雜的變化中如何把握數量關系,抓不變的量為突破口,往往問了就迎刃而解。如:科技書和文藝書共630本,其中科技書20%,後來又買來一些科技書,這時科技書佔30%,又買來科技書多少本?
16、數學模型思想方法:
所謂數學模型思想是指對於現實世界的某一特定對象,從它特定的生活原型出發,充分運用觀察、實驗、操作、比較、分析綜合概括等所謂過程,得到簡化和假設,它是把生活中實際問題轉化為數學問題模型的一種思想方法。培養學生用數學的眼光認識和處理周圍事物或數學問題乃數學的最高境界,也是學生高數學素養所追求的目標。
17、整體思想方法:
對數學問題的觀察和分析從宏觀和大處著手,整體把握化零為整,往往不失為一種更便捷更省時的方法。
三、怎樣教給學生數學的思想方法:
1、深入鑽研教材,認真挖掘教材中滲透的數學思想方法因素。
2、在知識的發生、形成、發展過程中,適時地進行數學思想方法的滲透。
3、注意在知識的小結、復習過程中運用對比、歸類的方法,幫助學生整理出比較清晰的、常用的一些數學思想方法。
4、引導學生應用數學的思想方法去解決一些生活中的實際問題。
5、考試時要適當設計一些題目,考查學生對數學思想方法理解、應用的能力。
㈦ 義務教務階段數學課程標准數學基本的思想有哪些
數學的基礎知識和概念
㈧ 小學數學課程標准中所說的基本思想指的是哪些
小學數學課程標准中所說的基本思想指的是哪些?
答:《數學課程標准》中所內說的「數學的基容本思想」主要指:
數學(抽象)的思想、數學(推理)的思想、數學建模的思想。
學生在積極參與教學活動的過程中,通過獨立思考、合作交流,逐步感悟數學思想。
㈨ 數學課標中的數學思考是什麼意思
《標准》在「課程目標」的總目標中明確指出:「通過義務教育階段的數學學習,學生能體會數學知識之間┅┅解決問題的能力。」所謂數學思考,就是在面臨各種現實的問題情境,特別是非數學問題時,能夠從數學的角度去思考問題,也就是能夠自覺應用數學的知識、方法、思想和觀念去發現其中所存在的數學現象和數學規律,並能夠運用數學的知識和數學的思想方法去解決問題。數學思考作為一種「過程性目標」,實際上是讓學生經歷「做數學」的過程,也就是讓學生經歷發現和提出問題、分析和解決問題的過程。
數學思考包括的內容:
1、建立數感、符號意識和空間觀念,初步形成幾何直觀和運算能力,發展形象思維和抽象思維。體會統計方法的意義,發展數據分析觀念,感受隨機現象。
2、學會獨立思考,體會數學的基本思想和思維方式。在參與觀察、實驗、猜想、證明、綜合實踐等數學活動中,發展合情推理和演繹推理能力,清晰地表達自己的想法。