課程表排列
1. 課表排列,語,數,物,化,英,體六節課,數,必須排在體前邊,則共有多少種排法
六節課任意排是A(6,6),由於數體是等可能排在前面的,因此有A(6,6)/2種排法,即6*5*4*3*2*1/2=360
2. 為什麼課程表上的語文、數學要分開排列的道理
什麼叫分開排列。。。
難道你要一堂課語文數學2老師一起教。。。
3. 請問課程表怎麼排列,有捷徑嗎
網上有排課軟體
4. 我想列印課表,在word中,課表是豎著排列的,我想換個角度,成橫排列,怎樣操作
可以通過菜單--文件--頁面設置--頁邊距--方向,選擇橫向來等效實現。
5. 排課表——排列組合的問題
不考慮題目限制,總方法數為P(8,8)=40320種課表;
其中限定的某節課為某科目的情況(如第一節為英語)有P(7,7)=5040種課表,這樣的限制條件的組合有C(4,1)=4種,所以共有5040*4=20160種課表;
其中限定的某兩節課為某兩個科目的情況(如第一節為英語、第二節為語文)有P(6,6)=720種課表,這樣的限制條件的組合有C(4,2)=6種,所以共有720*6=4320種課表;
其中限定的某三節課為某三個科目的情況(如第一節為英語、第二節為語文、第三節為物理)有P(5,5)=120種課表,這樣的限制條件的組合有C(4,3)=4種,所以共有120*4=480種課表;
其中限定的某四節課為某四個科目的情況(如第一節為英語、第二節為語文、第三節為物理、第四節為體育)有P(4,4)=24種課表,這樣的限制條件的組合有C(4,4)=1種,所以共有24*1=24種課表;
所以最終答案為:40320-20160+4320-480+24=24024種
反復加減是因為在前一步中有重復計算的情況。
6. 排列組合關於課表問題
(1):第一節不排體育,則第一節的排法有5種:即C5(下面)1(上面),也可以寫成內A5(下面)1(上面);最後一節不排數學,容則最後一節有4種排法,因為排第一節時用了一顆:C4(下面)1(上面);最後剩下中間的4節課,則是A4(下面)4(上面);總的排法就為:C51*C41*A44
(2)假設第一節是物理:則第二節的排法為:A51或C51;第六節的排法為:A41或C41;中間的為:A33;這種情況的排法為:A51*A41*A33
當第一節不是物理時:則第一節的排法為A41或C41;第二節的排法為:A41或C41;第六節的排法為:A31或C3;中間的為:A33;這種情況的排法為:A41*A41*A33
全部的排法為A41*A41*A33+A51*A41*A33
7. asp課程表排列代碼
定義一個主鍵然後關聯起來就可以了啊
8. SQL語句的一道題 三個基本表:學生表(Student)、課程表(Course)、學生選課表(SC)
1. select * from SC
2. select Sname,Sage from Student where Sdept = '計算機'
3. select Sno,Cno,Grade from SC where Grade >= 70 and Grade <= 80
4. select Sname,Sage from Student where Sage between 18 and 20 and Ssex = '男'
5. select top 1 Grade from SC where Cno = 'C01'
6. select max(Sage),min(Sage) from Student
7. select Sdept,sum(Sno) from Student group by Sdept
8. select course.Cname,sum(sc.Sno),max(Grade) from SC
join studet on Student.Sno = SC.Sno
join Course on Course.Cno = SC.Cno
group by course.cname,max(grade)
9. select sum(Cno),avg(Grade) from SC
join Course on Course.Cno = SC.Cno
join Student on Student.Sno= SC.Sno
order by SC.Sno
10. select Stuent.Sno,Stuent.Sname,sum(Grade) A from SC
join Student on Student.Sno = SC.Sno
group by sc.Sno,student.Sname
having A > 200
11. select Student.Sname,Student.Sdept from Student
join Course on Course.Cno = SC.Cno
join SC on SC.Sno = Student.Sno
where SC.Cno = 'C02'
12. select Student.sname,course.cno,sc.grade from sc
join student on student.sno = sc.sno
join course on course.cno = sc.cno
where sc.grade >= 80
order by sc.grade desc
13. select cno,cname from
(
select course.cno,course.cname,sun(sno) from student
join course on course.cno = sc.cno
join sc on sc.sno = student.sno
group by cno,cname
having sun(sno) > 0
)
14. ① select student.sname,student.sdept from
(
select student.sname,student.sdept,course.cname from student
join sc on sc.sno = student.sno
join course on course.cno = sc.cno
where course.cname = 'C01'
)
② select student.sno,student.sname from
(
select student.sno,student.sname,student.sdept,sc.grade from sc
join student on student.sno = sc,sno
where student.sdept = '信息' and sc.grade >= 80
)
③ select top 1 student.sname from
(
select student.sname,student.sdept,sum(sc.grade) from sc
join student on student.sno = sc.sno
where student.sdept = '計算機'
group by student.sname,student.sdept
order by
)
15. delete from sc where grade < 50
16. update sc set grade += 5 from sc
join course on course.cno = sc.cn
join student on student.sno = sc.sno
where student.sno =
(
select student.sno from sc
join course on course.cno = sc.cno
where course.cname = 'c01'
)
17. update sc set grade += 10 from sc
join student on student.sno = sc.sno
where student.sno =
(
select student.sno from student
join sc on sc.sno = student.sno
join course on course.cno = sc.cno
where student.sdept = '計算機' and course.cname = '計算機文化基礎'
)
18. create view [A] as
select student.sno,student.sname,student.sdept,course.cno,course.cname,sc.grade from sc
join student on student.sno = sc.sno
join course on course.cno = sc.cno
19. create view [A] as
select student.sno,avg(sc.grade) from sc
join student on student.sno = sc.sno
group by student.sno
20. create view [A] as
select student.sno,sum(sc.grade) from sc
join student on student.sno = sc.sno
group by student.sno
21. create index A on student(sname)
22. 不會
9. 學校某天有6節不同的課,其中一節語文,一節數學必須排在前三節,這一天的課表有幾種排法
這節課前三節如果都是不同的,就是6×5×四,如果可以相同的就是6×6×六,也就是六的立方。