随机数学基础辅导书
『壹』 马尔可夫链主要是哪类数学的研究内容
从狭义上说,马尔可夫链是随机过程的一个分支,是由前苏联数学家马尔可夫内在上世纪初提出的。所容以,详细介绍马尔可夫链的内容可以在任何一本《随机过程》的书里面找到。
当然,发展至今,马尔可夫链的概念已经大大超过了最初的模型。可以说一切符合马尔可夫性质的随机过程都可以利用马尔可夫链来研究。几个最基本的模型比如遗传过程,种群繁殖,泊松流,布朗运动,以至于到随机分析中的随机微分方程,可以在金融市场分析、定价等方面有所运用。马尔可夫性引出的鞅的概念也是当今随机数学领域的研究前沿之一。总之,从广义上说,马尔可夫链是一系列具有马尔可夫性的随机过程的总称。
如果LZ想要了解相关的内容,可以去查一些随机过程的书。上面都会有专门的介绍。
推荐两本,《应用随机过程》 清华大学出版社 林元烈
《随机过程》 科学出版社 中科大的两位老师编写的。
前者更加全面、深刻,但是数学理论也更为深,不太适合非数学专业或数学基础一般的人。后者的介绍比较直白,适合入门。
『贰』 1月MPA参考书
mpa考试全国统一
辅导书可以买机械工业出版社的系列教材
名:2010年MBA、、MPACC联考综合能力考试辅导教材
作者:
出版社:机械工业出版社
原价:60.00
出版日期:2009年10月
ISBN:7111285263
字数:
页数:431页
印次:
版次:第1版
纸张:平装
开本:16
商品标识:asinb002sw4kea
编辑推荐
--------------------------------------------------------------------------------
《2010年MBA、MPA、MPACC联考综合能力考试辅导教材》:华章教育
内容提要
--------------------------------------------------------------------------------
《2010年MBA、MPA、MPACC联考综合能力考试辅导教材》是MBA、MPA、MAPcc综合能力考试的辅导教材。综合能力考试的目的是测试考生运用数学基础知识分析与解决问题的能力、逻辑思维能力和汉语理解及书面表达能力。综合能力考试由问题求解、条件充分性判断、逻辑推理和写作四部分组成。问题求解和条件充分性判断题型涉及初等数学等数学基础知识,但不同于通常的数学考试,问题求解题和条件充分性判断题本质上是以数学题的形式为载体测试考生分析与解决问题的能力。
目录
--------------------------------------------------------------------------------
前言
第一部分 数学基础知识与应试指导
第一章 实数的概念、性质和运算
第一节 充分条件与条件充分性判断
一、充分条件
二、条件充分性判断
第二节 实数及其运算
一、实数的分类
二、实数的基本性质
三、实数的运算
第三节 绝对值和平均值
一、实数的绝对值
二、平均值
第四节 比和比例
习题一
第二章 整式和分式
第一节 整式
一、整式的运算
二、多项式的因式分解
第二节 分式
一、分式的基本性质
二、分式的运算
习题二
第三章 方程和不等式
第一节 方程和方程组
一、一元一次方程和它的解法
二、二元一次方程组
三、一元二次方程
第二节 不等式和不等式组
一、一元一次不等式(组)及其解法
二、一元二次不等式及其解法
三、含有绝对值的不等式的解法
习题三
第四章 数列
第一节 基本概念
第二节 等差数列
第三节 等比数列
习题四
第五章 排列组合与概率初步
第一节 排列组合
一、两个基本原理
二、排列与排列数公式
三、组合与组合数公式
第二节 概率初步
一、随机事件的概率
二、概率计算公式
习题五
第六章 平面几何与解析几何初步
第一节 常见的平面几何图形
一、两条直线的位置关系
二、三角形
三、四边形
四、圆
第二节 平面解析几何基本公式
一、平面直角坐标系
二、平面解析几何基本公式
第三节 直线与圆的方程
一、直线
二、圆
习题六
第七章 数学综合练习题与解析
第一节 问题求解综合练习题与解析
一、问题求解综合练习题
二、问题求解综合练习题解析
第二节 条件充分性判断综合练习题与解析
一、条件充分性判断综合练习题
二、条件充分性判断综合练习题解析
第二部分 逻辑推理基础知识与应试指导
第八章 推理概念和逻辑基本规律
第一节 推理的概念及推理形式
一、推理
二、论证
三、命题的形式
四、推理形式
五、推理的省略形式
第二节 对推理或论证的评价尺度
一、推理形式的有效性
二、推理得出真实结论的条件
三、前提对结论的支持或反驳程度
四、前提与结论的语义关联
五、推理或论证的解释力和说服力
第三节 逻辑基本规律
一、同一律
二、矛盾律
三、排中律
第九章 演绎推理
第一节 直言命题和三段论
一、直言命题的类型
二、直言命题的对当关系
三、三段论
第二节 关系命题和排序问题
第三节 复合命题及其推理
一、联言命题和联言推理
二、选言命题和选言推理
三、假言命题和假言推理
四、负命题及其等值命题
五、常用的几种复合命题推理
第四节 模态命题及其推理
第十章 归纳推理
第一节 简单枚举归纳推理
第二节 类比推理
第三节 求因果联系的方法
一、因果关系的特点
二、求同法
三、求异法
四、求同求异并用法
五、共变法
六、剩余法
七、求因果联系的方法在MB逻辑考试中的应用
第四节 抽样统计和“精确”数字陷阱
一、抽样统计方法
二、某些“精确”数字陷阱
第十一章 应试指导
第一节 逻辑推理题样式及特点
一、逻辑推理题的基本样式
二、逻辑推理试题的一般特点
第二节 逻辑推理试题的类型
一、加强前提型
二、削弱结论型
三、说明解释型
四、语义分析型
五、论证评价型
六、相似比较型
七、直接推断型
八、逻辑运算型
第十二章 逻辑推理练习题与解析
第一节 逻辑推理练习题
第二节 逻辑推理练习题解析
第三部分 写作应试指导
第十三章 论说文
第一节 审题与立意
一、审题
二、立意
三、全面注意写作的具体要求
第二节 论点、论据与论证
一、论点要正确鲜明
二、论据要确凿充足
三、论证要严密
第三节 论说文的结构
一、引论
二、本论
三、结论
第四节 论说文的语言
一、准确性
二、鲜明性
三、生动性
第五节 论说文试题及范文
一、历年MBA联考论说文写作题目
二、模拟试题及范文
第十四章 论证有效性分析
第一节 论证有效性分析概述
一、论证有效性分析及其特点
二、论证有效性分析的要点
三、论证有效性分析练习题
第二节 历年MBA联考论证有效性分析试题及解析
第三节 论证有效性分析常见问题与讲评
第四部分 最新试卷及模拟试题
第十五章 最新试卷与解析
2008年春季入学MBA联考综合能力试卷
2008年春季入学MBA联考综合能力试题解析
2008年秋季入学MBA联考综合能力试卷
2008年秋季入学MBA联考综合能力试题解析
2009年春季入学MBA联考综合能力试卷
2009年春季入学MBA联考综合能力试题解析
2009年秋季入学MBA联考综合能力试卷
2009年秋季入学MBA联考综合能力试题解析
第十六章 模拟试题
模拟试题一
模拟试题
『叁』 关于数学的资料
数学(mathematics或maths,来自希腊语,“máthēma”;经常被缩写为“math”),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。数学家和哲学家对数学的确切范围和定义有一系列的看法。
而在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的基本工具。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”).
数学起源于人类早期的生产活动,古巴比伦人从远古时代开始已经积累了一定的数学知识,并能应用实际问题.从数学本身看,他们的数学知识也只是观察和经验所得,没有综合结论和证明,但也要充分肯定他们对数学所做出的贡献.
基础数学的知识与运用是个人与团体生活中不可或缺的一部分.其基本概念的精炼早在古埃及、美索不达米亚及古印度内的古代数学文本内便可观见.从那时开始,其发展便持续不断地有小幅度的进展.但当时的代数学和几何学长久以来仍处于独立的状态.
代数学可以说是最为人们广泛接受的“数学”.可以说每一个人从小时候开始学数数起,最先接触到的数学就是代数学.而数学作为一个研究“数”的学科,代数学也是数学最重要的组成部分之一.几何学则是最早开始被人们研究的数学分支.
直到16世纪的文艺复兴时期,笛卡尔创立了解析几何,将当时完全分开的代数和几何学联系到了一起.从那以后,我们终于可以用计算证明几何学的定理;同时也可以用图形来形象的表示抽象的代数方程.而其后更发展出更加精微的微积分.
现时数学已包括多个分支.创立于二十世纪三十年代的法国的布尔巴基学派则认为:数学,至少纯数学,是研究抽象结构的理论.结构,就是以初始概念和公理出发的演绎系统.他们认为,数学有三种基本的母结构:代数结构(群,环,域,格……)、序结构(偏序,全序……)、拓扑结构(邻域,极限,连通性,维数……).
(3)随机数学基础辅导书扩展阅读:
数学分支
一、数学史
二、数理逻辑与数学基础a:演绎逻辑学(亦称符号逻辑学)b:证明论 (亦称元数学) c:递归论 d:模型论 e:公理集合论 f:数学基础 g:数理逻辑与数学基础其他学科
三、数论
a:初等数论 b:解析数论 c:代数数论 d:超越数论 e:丢番图逼近 f:数的几何 g:概率数论 h:计算数论 i:数论其他学科
四、代数学
a:线性代数 b:群论 c:域论 d:李群 e:李代数 f:Kac-Moody代数 g:环论 (包括交换环与交换代数,结合环与结合代数,非结合环与非结 合代数等) h:模论 i:格论 j:泛代数理论 k:范畴论 l:同调代数 m:代数K理论 n:微分代数 o:代数编码理论 p:代数学其他学科
五、代数几何学
六、几何学
a:几何学基础 b:欧氏几何学 c:非欧几何学 (包括黎曼几何学等) d:球面几何学 e:向量和张量分析 f:仿射几何学 g:射影几何学 h:微分几何学 i:分数维几何 j:计算几何学 k:几何学其他学科
七、拓扑学
a:点集拓扑学 b:代数拓扑学 c:同伦论 d:低维拓扑学 e:同调论 f:维数论 g:格上拓扑学 h:纤维丛论 i:几何拓扑学 j:奇点理论 k:微分拓扑学 l:拓扑学其他学科
八、数学分析
a:微分学 b:积分学 c:级数论 d:数学分析其他学科
九、非标准分析
十、函数论
a:实变函数论 b:单复变函数论 c:多复变函数论 d:函数逼近论 e:调和分析 f:复流形 g:特殊函数论 h:函数论其他学科
十一、常微分方程
a:定性理论 b:稳定性理论 c:解析理论 d:常微分方程其他学科
十二、偏微分方程
a:椭圆型偏微分方程 b:双曲型偏微分方程 c:抛物型偏微分方程 d:非线性偏微分方程 e:偏微分方程其他学科
十三、动力系统
a:微分动力系统 b:拓扑动力系统 c:复动力系统 d:动力系统其他学科
十四、积分方程
十五、泛函分析
a:线性算子理论 b:变分法 c:拓扑线性空间 d:希尔伯特空间 e:函数空间 f:巴拿赫空间 g:算子代数 h:测度与积分 i:广义函数论 j:非线性泛函分析 k:泛函分析其他学科
十六、计算数学
a:插值法与逼近论 b:常微分方程数值解 c:偏微分方程数值解 d:积分方程数值解 e:数值代数 f:连续问题离散化方法 g:随机数值实验 h:误差分析 i:计算数学其他学科
十七、概率论
a:几何概率 b:概率分布 c:极限理论 d:随机过程 (包括正态过程与平稳过程、点过程等) e:马尔可夫过程 f:随机分析 g:鞅论 h:应用概率论 (具体应用入有关学科) i:概率论其他学科
十八、数理统计学
a:抽样理论 (包括抽样分布、抽样调查等 )b:假设检验 c:非参数统计 d:方差分析 e:相关回归分析 f:统计推断 g:贝叶斯统计 (包括参数估计等) h:试验设计 i:多元分析 j:统计判决理论 k:时间序列分析 l:数理统计学其他学科
十九、应用统计数学
a:统计质量控制 b:可靠性数学 c:保险数学 d:统计模拟
二十、应用统计数学其他学科
二十一、运筹学
a:线性规划 b:非线性规划 c:动态规划 d:组合最优化 e:参数规划 f:整数规划 g:随机规划 h:排队论 i:对策论 亦称博弈论 j:库存论 k:决策论 l:搜索论 m:图论 n:统筹论 o:最优化 p:运筹学其他学科
二十二、组合数学
二十三、模糊数学
二十四、量子数学
二十五、应用数学 (具体应用入有关学科)
二十六、数学其他学科
『肆』 数学三都考些什么,怎么复习。推荐几个好辅导书
给你一份大纲: 书是无所谓的,只要保正这些知识点能涵盖就行了。
2009年考研数学大纲内容 数三
微积分
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性.单调性.周期性和奇偶性 复合函数.反函数.分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.
2.了解函数的有界性.单调性.周期性和奇偶性.
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.
4.掌握基本初等函数的性质及其图形,了解初等函数的概念.
5.了解数列极限和函数极限(包括左极限与右极限)的概念.
6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.
7.理解无穷小的概念和基本性质.掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.
8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.
9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性.最大值和最小值定理.介值定理),并会应用这些性质.
二、一元函数微分学
考试内容
导数和微分的概念 导数的几何意义和经济意义 函数的可导性与连续性之间的关系 平面曲线的切线与法线 导数和微分的四则运算 基本初等函数的导数 复合函数.反函数和隐函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L'Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性.拐点及渐近线 函数图形的描绘 函数的最大值与最小值
考试要求
1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.
2.掌握基本初等函数的导数公式.导数的四则运算法则及复合函数的求导法则,会求分段函数的导数 会求反函数与隐函数的导数.
3.了解高阶导数的概念,会求简单函数的高阶导数.
4.了解微分的概念,导数与微分之间的关系以及一阶微分形式的不变性,会求函数的微分.
5.理解罗尔(Rolle)定理.拉格朗日( Lagrange)中值定理.了解泰勒定理.柯西(Cauchy)中值定理,掌握这四个定理的简单应用.
6.会用洛必达法则求极限.
7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.
8.会用导数判断函数图形的凹凸性(注:在区间 内,设函数 具有二阶导数.当 时, 的图形是凹的;当 时, 的图形是凸的),会求函数图形的拐点和渐近线.
9.会描述简单函数的图形.
三、一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿一莱布尼茨(Newton- Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 反常(广义)积分 定积分的应用
考试要求
1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法和分部积分法.
2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿一莱布尼茨公式以及定积分的换元积分法和分部积分法.
3.会利用定积分计算平面图形的面积.旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.
4.了解反常积分的概念,会计算反常积分.
四、多元函数微积分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限与连续的概念 有界闭区域上二元连续函数的性质 多元函数偏导数的概念与计算 多元复合函数的求导法与隐函数求导法 二阶偏导数 全微分 多元函数的极值和条件极值.最大值和最小值 二重积分的概念.基本性质和计算 无界区域上简单的反常二重积分
考试要求
1.了解多元函数的概念,了解二元函数的几何意义.
2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.
3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.
4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.
5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标.极坐标).了解无界区域上较简单的反常二重积分并会计算.
五、无穷级数
考试内容
常数项级数收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与 级数及其收敛性 正项级数收敛性的判别法 任意项级数的绝对收敛与条件收敛 交错级数与莱布尼茨定理 幂级数及其收敛半径.收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式
考试要求
1.了解级数的收敛与发散.收敛级数的和的概念.
2.了解级数的基本性质和级数收敛的必要条件,掌握几何级数及 级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.
3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.
4.会求幂级数的收敛半径、收敛区间及收敛域.
5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.
6.了解 . . . 及 的麦克劳林(Maclaurin)展开式.
六、常微分方程与差分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程及简单的非齐次线性微分方程 差分与差分方程的概念 差分方程的通解与特解 一阶常系数线性差分方程 微分方程的简单应用
考试要求
1.了解微分方程及其阶、解、通解、初始条件和特解等概念.
2.掌握变量可分离的微分方程.齐次微分方程和一阶线性微分方程的求解方法.
3.会解二阶常系数齐次线性微分方程.
4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式.指数函数.正弦函数.余弦函数的二阶常系数非齐次线性微分方程.
5.了解差分与差分方程及其通解与特解等概念.
6.了解一阶常系数线性差分方程的求解方法.
7.会用微分方程求解简单的经济应用问题.
线性代数
一、行列式
考试内容
行列式的概念和基本性质 行列式按行(列)展开定理
考试要求
1.了解行列式的概念,掌握行列式的性质.
2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.
二、矩阵
考试内容
矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算
考试要求
1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.
2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.
3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.
4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.
5.了解分块矩阵的概念,掌握分块矩阵的运算法则.
三、向量
考试内容
向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法
考试要求
1.了解向量的概念,掌握向量的加法和数乘运算法则.
2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.
3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.
4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.
5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.
四、线性方程组
考试内容
线性方程组的克莱姆(Cramer)法则 线性方程组有解和无解的判定 齐次线性方程组的基础解系和通解 非齐次线性方程组的解与相应的齐次线件方程组(导出组)的解之间的关系 非齐次线性方程组的通解
考试要求
1.会用克莱姆法则解线性方程组.
2.掌握非齐次线性方程组有解和无解的判定方法.
3.理解齐次线性方程组的基础解系的概念,掌握齐次线性方程组的基础解系和通解的求法.
4.理解非齐次线性方程组解的结构及通解的概念.
5.掌握用初等行变换求解线性方程组的方法.
五、矩阵的特征值和特征向量
考试内容
矩阵的特征值和特征向量的概念、性质 相似矩阵的概念及性质 矩阵可相似对角化的充分必要条件及相似对角矩阵 实对称矩阵的特征值和特征向量及相似对角矩阵
考试要求
1.理解矩阵的特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值和特征向量的方法.
2.理解矩阵相似的概念,掌握相似矩阵的性质,了解矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.
3.掌握实对称矩阵的特征值和特征向量的性质.
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求
1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.
2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.
3.理解正定二次型.正定矩阵的概念,并掌握其判别法.
概率论与数理统计
一、随机事件和概率
考试内容
随机事件与样本空间 事件的关系与运算 完备事件组 概率的概念 概率的基本性质 古典型概率 几何型概率 条件概率 概率的基本公式 事件的独立性 独立重复试验
考试要求
1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.
2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式等.
3.理解事件的独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.
二、随机变量及其分布
考试内容
随机变量 随机变量的分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布
考试要求
1.理解随机变量的概念,理解分布函数
的概念及性质,会计算与随机变量相联系的事件的概率.
2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布 、几何分布、超几何分布、泊松(Poisson)分布 及其应用.
3.掌握泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.
4.理解连续型随机变量及其概率密度的概念,掌握均匀分布 、正态分布 、指数分布及其应用,其中参数为 的指数分布 的概率密度为
5.会求随机变量函数的分布.
三、多维随机变量的分布
考试内容
多维随机变量及其分布函数 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常见二维随机变量的分布 两个及两个以上随机变量的函数的分布
考试要求
1.理解多维随机变量的分布函数的概念和基本性质.
2.理解二维离散型随机变量的概率分布和二维连续型随机变量的概率密度、掌握二维随机变量的边缘分布和条件分布.
3.理解随机变量的独立性和不相关性的概念,掌握随机变量相互独立的条件,理解随机变量的不相关性与独立性的关系.
4.掌握二维均匀分布和二维正态分布 ,理解其中参数的概率意义.
5.会根据两个随机变量的联合分布求其函数的分布,会根据多个相互独立随机变量的联合分布求其函数的分布.
四、随机变量的数字特征
考试内容
随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 切比雪夫(Chebyshev)不等式 矩、协方差、相关系数及其性质
考试要求
1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.
2.会求随机变量函数的数学期望.
3.了解切比雪夫不等式.
五、大数定律和中心极限定理
对比:无变化
六、数理统计的基本概念
对比:
1.考试要求1中理解“总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念”,改为了解“总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念”.
2.考试要求2中理解“标准正态分布、 分布、 分布和 分布的上侧 分位数”改为了解“标准正态分布、 分布、 分布和 分布的上侧 分位数”.
3.考试要求3中去掉“正态总体的样本均值差、样本方差比的抽样分布”.
4.考试要求4中理解“经验分布函数的概念和性质”改为了解“经验分布函数的概念和性质”.
5.考试要求4中去掉“会根据样本值求经验分布函数”.
七、参数估计
对比:
1.考试内容去掉“估计量的评选标准 区间估计的概念 单个正态总体的均值的区间估计 单个正态总体的方差和标准差的区间估计 两个正态总体的均值差和方差比的区间估计”.
2.考试要求1中理解“参数的点估计、估计量与估计值的概念”改为了解“参数的点估计、估计量与估计值的概念”.
3.考试要求1中去掉“了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性”.
4.考试要求3去掉“掌握建立未知参数的(双侧和单侧)置信区间的一般方法;掌握正态总体均值、方差、标准差、矩以及与其相联系的数字特征的置信区间的求法”.
5.考试要求4去掉“掌握两个正态总体的均值差和方差比及相关数字特征的置信区间的求法”.
八、假设检验
『伍』 科尔莫戈罗夫
柯尔莫哥洛夫
1903年4月25日,A.N.柯尔莫戈洛夫出生于俄罗斯的坦博夫城。他的父亲是一名农艺师和作家,在政府部门任职,1919年去世。他的母亲出身于贵族家庭,在他出生后10天去世。他只好由二位姨妈抚育和指导学习,她们培养了他对书本和大自然的兴趣和好奇心。他5、6岁时就归纳出了“l=1^2,1+3=2^2,1+3+5二3^2,1+3+5+7=4^2.…”这一数学规律。1910年他进入莫斯科一所文法学校预备班,很快对各科知识都表现出浓厚的兴趣:14岁时他就开始自学高等数学,汲取了许多数学知识,并掌握了很多数学思想与方法。1920年他高中毕业,进入莫斯科大学,先学习冶金,后来转学数学,并决心以数学为终身职业。大学三年级时就发表了论文,表现出卓越的数学才能,载誉国际。1925年大学毕业后,当研究生。1929年研究生毕业后,担任莫斯科大学数学力学研究所助理研究员。1935年获得苏联首批博士学位。1931年起他担任莫斯科大学教授,并指导研究生。1933年担任莫斯科大学数学力学研究所所长,创建了概率论、数理统计、数理逻辑、概率统计方法等教研室,先后教过数学分析、常微分方程、复变函数论、概率论、数理逻辑和信息论等课程。1939年当选为原苏联科学院院士、主席团委员和数学研究所所长。1954年担任莫斯科大学数学力学系主任。1966年当选为原苏联教育科学院院士。
曾任《苏联大网络全书》数学学科的主编,长期担任《数学科学的成就》杂志的主编,创办《概率论及其应用》学术杂志和供中学生阅读的《量子》科普杂志。
他十分重视中学数学教育。上世纪30年代起就指导全国中学生数学奥林匹克竞赛活动,编写辅导书籍,亲自给学生讲课。创办物理数学寄宿学校,培养了大批优秀中学生。先后担任苏联科学院科学教育委员会数学部主任和教育部中学教科书委员会数学部主任,主持编写中学数学教学大纲和教科书,从事教学改革试验。他一生发表学术论文488篇(包含合作文章)和科普文章57篇。他是一位伟大的教育家。他热爱学生,对学生严格要求,指导有方,直接指导的学生有67人,他们大多数成为世界级的数学家,其中14人成为前苏联科学院院士。1987年10月20日在莫斯科逝世,享年84岁。 他的研究范围广泛:基础数学、数理逻辑、实变函数论、微分方程、概率论、数理统计、信息论、泛函分析力学、拓朴学……以及数学在物理、化学、生物、地质、冶金、结晶学、人工神经网络中的广泛应用。他创建了一些新的数学分支——信息算法论、概率算法论和语言统计学等。下面简要地介绍他的一些数学成就。
1. 在随机数学——概率论,随机过程论和数理统计方面
1924年他念大学四年级时就和当时的苏联数学家辛钦一起建立了关于独立随机变量的三级数定理。1928年他得到了随机变量序列服从大数定理的充要条件。1929年得到了独立同分布随机变量序列的重对数律。1930年得到了强大数定律的非常一般的充分条件。1931年发表了《概率论的解析方法》一文,奠定了马尔可夫过程论的基础,马尔可夫过程对物理、化学、生物、工程技术和经济管理等有十分广泛应用,仍然是当今世界数学研究的热点和重点之一。1932年得到了含二阶矩的随机变量具有无穷可分分布律的充要条件。1934年出版了《概率论基本概念》一书,在世界上首次以测度论和积分论为基础建立了概率论公理结论,这是一部具有划时代意义的巨著,在科学史上写下原苏联数学最光辉的一页。1935年提出了可逆对称马尔可夫过程概念及其特征所服从的充要条件,这种过程成为统计物理、排队网络、模拟退火、人工神经网络、蛋白质结构的重要模型。1936—1937年给出了可数状态马尔可夫链状态分布。 1939年定义并得到了经验分布与理论分布最大偏差的统计量及其分布函数。上世纪30~40年代他和辛钦一起发展了马尔可夫过程和平稳随机过程论,并应用于大炮自动控制和工农业生产中,在卫国战争中立了功。1941年他得到了平稳随机过程的预测和内插公式。1955—1956年他和他的学生,苏联数学家Y.V.Prokhorov开创了取值于函数空间上概率测度的弱极限理论,这个理论和苏联数学家A.B.Skorohod引入的D空间理论是弱极限理论的划时代成果。
2. 在纯粹数学和确定性现象的数学方面
1921年他念大学二年级时开始研究三角级数与集合上的算子等许多复杂问题,名扬世界。1922年定义了集合论中的基本运算。1925年证明了排中律在超限归纳中成立,构造了直观演算系统,还证明了希尔伯特变换中的一个车贝雪夫型不等式。1932年应用拓朴、群的观点研究几何学。1936年构造了上同调群及其运算。1935—1936年引入一种逼近度量,开创了逼近论的新方向。1937年给出了一个从一维紧集到二维紧集的开映射。1934~1938年定义了线性拓扑空间及其有界集和凸集等概念,推进了泛函分析的发展。上世纪50年代中期,他和他的大学三年级学生V.I.Arnord、德国数学家J.K.Moser一起建立了KAN理论,解决了动力系统中的基本问题。他将信息论用来研究系统的遍历性质,成为动力系统理论发展的新起点。1956~1957年,他提出基本解题思路,由他的学生V.IArnord,彻底解决了希尔伯特第13问题。
3.在应用数学方面
在生物学中,1937年他首次构造了非线性扩散行波型稳定解,1947年提出了分支过程及其灭绝概率,1939年验证基因遗传的孟德尔定律。在金属学中,1937年研究了金属随机结晶过程中一个给定点属于结晶团的概率及平均结晶的数目。1941年应用随机过程的预测和内插公式于无线电工程、火炮等的自动控制、大气海洋等自然现象。在流体力学中,上世纪40年代得出局部迷向湍流的近似公式。 综观柯尔莫戈夫的一生,无论在纯粹数学还是应用数学方面,在确定性现象的数学还是随机数学方面,在数学研究还是数学教育方面,他都作出了杰出的贡献。
由于他的卓越成就,他在国内外享有极高的声誉。他是美国、法国、民主德国、荷兰、波兰、芬兰等20多个科学院的外国院士,英国皇家学会外国会员,他是法国巴黎大学,波兰华沙大学等多所大学的名誉博士。1963年获国际巴尔桑奖,1975年获匈牙利奖章,1976年获美国气象学会奖章、民主德国赫姆霍兹奖章,1980年获世界最著名的沃尔夫奖。在国内,1941年获国家奖,1951年获苏联科学院车贝雪夫奖,1963年获苏维埃英雄称号,1965年获列宁奖,1940年获劳动红旗勋章,1944—1979年获7枚列宁勋章、金星奖章及“在伟大的爱国战争中英勇劳动”奖章,1983年获十月革命勋章,1986年获苏联科学院罗巴切夫斯基奖。
他热爱生活,兴趣广泛,喜欢旅行、滑雪、诗歌、美术和建筑。他十分谦虚,从不夸耀自己的成就和荣誉。他淡泊名利,不看重金钱,他把奖金捐给学校图书馆,并且不去领取高达10万美元的沃尔夫奖。他是一位具有高尚道德品质和崇高的无私奉献精神的科学巨人
『陆』 推荐一本数据库原理的好书。中文的,如果是翻译的,要公认翻译的不错的。
数据库系统概念...个人还是认为国外的作者的书好一点...不过那翻译也还过得去...
『柒』 我要写一本数学辅导书!
1。初中数学主要有以下几点
一. 代数部分:
(1) 实数(有理数,无理数) 正数和负数
有理数
数轴
相反数
绝对值
有理数的加减法 有理数的加法
有理数的减法 有理数的加减混合运算
有理数的乘法
有理数的除法
有理数的乘方
科学记数法
近似数和有效数字
有理数混合运算
计算器的使用
平方根
立方根
实数与数轴
用计算器开方
数学活动
(2) 代数式(整式,分式,二次根式) 一 代数式
二 整式
1 整式 整式的加减速
2 整式的乘法
3 整式的除法
三 因式分解
1 提公因式法
2 运用公式法
3 分组分解法
四 分式
1 分式、分式的基本性质
2 分式的乘除法
3 分式的加减法
五 二次根式
六 一元一次不等式和一元一次不等式组
第二篇 方法
一 整体思维方法
二 换元法
三 数形结合思想
四 分类讨论思想
五 化归思想
六 因式分解法
七 拆项、添项法
八 参数法
九 配方法
十 待定系数法
(3) 方程(组)与不等式(组)(一元二次方程,二(三)元一次方程组,一元二次方程,二元二次方程组,一元一次不等式,一元一次不等式组)第一讲 一元一次方程
一元一次方程的解法
二元一次方程组与三元一次方程组
二元一次方程组和它的解法
三元一次方程组和它的解法
一元一次不等式与一元一次不等式组
一元一次不等式和它的解法
一元一次不等式组和它的解法
直接开平方法
因式分解法
公式法
根与系数的关系
分式方程和它的解法(1)
分式方程和它的解法(2)
二元二次方程组和它的解法(1)
二元二次方程组和它的解法(2)
创新型应用题
探究型应用题
(4) 函数(直角坐标系,一次函数,正比例函数,反比例函数,二次函数)二次函数
I.定义与定义表达式
一般地,自变量x和因变量y之间存在如下关系:
y=ax²+bx+c(a,b,c为常数,a≠0)
则称y为x的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式
一般式:y=ax²+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)²+k [抛物线的顶点P(h,k)]
交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b²)/4a x1,x2=(-b±√b²-4ac)/2a
III.二次函数的图象
在平面直角坐标系中作出二次函数y=x²的图象,
可以看出,二次函数的图象是一条抛物线。
IV.抛物线的性质
1.抛物线是轴对称图形。对称轴为直线
x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为
P [ -b/2a ,(4ac-b²)/4a ]。
当-b/2a=0时,P在y轴上;当Δ= b²-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;
当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b²-4ac>0时,抛物线与x轴有2个交点。
Δ= b²-4ac=0时,抛物线与x轴有1个交点。
Δ= b²-4ac<0时,抛物线与x轴没有交点。
V.二次函数与一元二次方程
特别地,二次函数(以下称函数)y=ax²+bx+c,
当y=0时,二次函数为关于x的一元二次方程(以下称方程),
即ax²+bx+c=0
此时,函数图象与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
一次函数
I、定义与定义式:
自变量x和因变量y有如下关系:
y=kx+b(k,b为常数,k≠0)
则称y是x的一次函数。
特别地,当b=0时,y是x的正比例函数。
II、一次函数的性质:
y的变化值与对应的x的变化值成正比例,比值为k
即 △y/△x=k
III、一次函数的图象及性质:
1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。
2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。
3. k,b与函数图象所在象限。
当k>0时,直线必通过一、三象限,y随x的增大而增大;
当k<0时,直线必通过二、四象限,y随x的增大而减小。
当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。
特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。
这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。
IV、确定一次函数的表达式:
已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。
(1)设一次函数的表达式(也叫解析式)为y=kx+b。
(2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程:
y1=kx1+b① 和 y2=kx2+b②。
(3)解这个二元一次方程,得到k,b的值。
(4)最后得到一次函数的表达式。
V、一次函数在生活中的应用
1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
反比例函数
形如 y=k/x(k为常数且k≠0) 的函数,叫做反比例函数。
自变量x的取值范围是不等于0的一切实数。
反比例函数的图像为双曲线。
如图,上面给出了k分别为正和负(2和-2)时的函数图像。
三角函数
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
它有六种基本函数:
函数名 正弦 余弦 正切 余切 正割 余割
符号 sin cos tan cot sec csc
正弦函数 sin(A)=a/h
余弦函数 cos(A)=b/h
正切函数 tan(A)=a/b
余切函数 cot(A)=b/a
在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。函数的概念对于数学和数量学的每一个分支来说都是最基础的。
术语函数,映射,对应,变换通常都是同一个意思。
简而言之,函数是将唯一的输出值赋予每一输入的“法则”。这一“法则”可以用函数表达式、数学关系,或者一个将输入值与输出值对应列出的简单表格来表示。函数最重要的性质是其决定性,即同一输入总是对应同一输出(注意,反之未必成立)。从这种视角,可以将函数看作“机器”或者“黑盒”,它将有效的输入值变换为唯一的输出值。通常将输入值称作函数的参数,将输出值称作函数的值。
最常见的函数的参数和函数值都是数,其对应关系用函数式表示,函数值可以通过直接将参数值代入函数式得到。如下例,
f(x) = x2 ,x 的平方即是函数值。
也可以将函数很简单的推广到与多个参量相关的情况。例如:
g(x,y) = xy 有两个参量x和y,以乘积xy为值。与前面不同,这一“法则”与两个输入相关。其实,可以将这两个输入看作一个有序对(x, y),记g为以这个有序对(x, y)作参数的函数,这个函数的值是xy。
科学研究中经常出现未知或不能给出表达式的函数。例如地球上不同时刻温度的分布,这一函数以地点和时间为参量,以某一地点、某一时刻的温度作为输出。
函数的概念并不局限于数的计算,甚至也不局限于计算。函数的数学概念更为宽泛,而且不仅仅包括数之间的映射关系。函数将“定义域”(输入集)与“对映域”(可能输出集)联系起来,使得定义域的每一个元素都唯一对应对映域中的一个元素。函数,如下文所述,被抽象定义为确定的数学关系。由于函数定义的一般性,函数概念对于几乎所有的数学分支都是很基本的。
(5) 概率与统计(抽样调查,数据分析,概率评估)一、概率论——研究随机现象的数学
二、概率——随机事件发生的可能性大小的数量表征
三、频率与概率的估计
四、等可能性与概率的计算
五、用列举法求事件的概率
六、用列举法计算概率的几类典型问题
七、澄清一些错误认识
八、初中概率教学的基本要求与原则
二. 几何部分
(1) 相交线与平行线(线段,角,垂直,命题,定理,公理)1.平行线的判定公理(定理)
(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行(简称“同位角相等,两直线平行”).
(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行(简称“内错角相等,两直线平行”).
(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行(简称“同旁内角互补,两直线平行”).
2.平行线的性质公理(定理)
如果两条平行线被第三条直线所截,那么
(1)同位角相等(简称“两直线平行,同位角相等”).
(2)内错角相等(简称“两直线平行,内错角相等”).
(3)同旁内角互补(简称“两直线平行,同旁内角互补”).
对于平行线的判定和性质,一定不可混淆二者的题设和结论,要把它们严格区别开来,见下表:
分类
题设(因)
结论(果)
平行线判定
同位角相等
两直线平行
内错角相等
同旁内角互补
平行线性质
两直线平行
同位角相等
内错角相等
同旁内角互补
由此可见,判定定理与性质定理是因果关系倒置的两类定理.平行线的判定是由角来确定线的位置关系,平行线的性质是由线的位置关系来确定角的数量关系.对判定定理而言,“两直线平行”是推论,而对性质而言,“两直线平行”则是必不可少的前提条件,因此,不能随随便便就说“同位角(内错角)相等”、“同旁内角互补”.
平行线还有以下一些判定和性质:
(1)平行公理 经过直线外一点,有且只有一条直线与已知直线平行.
(2)平行线的传递性 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.
(3)如果两条直线都垂直于第三条直线,那么这两条直线互相平行.
(4)一条直线和两条平行线中的一条垂直,那么它和另一条也垂直 (2) 三角形(分类,边,面积,中位线,全等,相似,直角三角形)
(3) 四边形(梯形判定性质,平行四边形判定性质,其他特殊四边形)一、教学目标
1、认识特殊四边形之间的关系,并能证明它们的性质定理和判定定理;+
2、应用所得的结论通过计算和证明解决一些问题;
3、通过证明使学生对证明的必要性有进一步的认识
4、通过四边形的从属关系渗透集合思想。
5、通过理解四种四边形内在联系,培养学生辩证观点。
二、教学重点、难点和疑点
1.重点:应用所得的结论通过计算和证明解决一些问题;
2.难点:特殊四边形之间的关系及性质,利用所得的结论通过计算和证明解决一些问题;
3.疑点:平行四边形,矩形,菱形,正方形之间的共性,特性及从属关系(可以通过列表、画图,简单的关系图,举反例等来说明)。
三、教学方法
归纳法,边讲边练法。
四、教学手段
投影。
五、教学过程 :
(一)、学生完成下列填空:
特殊四边形的联系与区别:
边
角
对角线
平行四边形
对边平行且相等
对角相等
邻角互补
对角线互相平分
矩形
对边平行且相等
四个角都是直角
对角线互相平分且相等
菱形
对边平行且四
条边都相等
对角相等
对角线互相垂直平分,
每条对角线平分一组对角
正方形
对边平行且四
条边都相等
四个角都是直角
对角线互相平分且相等
每条对角线平分一组对角
(二) 讲解新课
1、回顾本章主要内容
本章内容: 矩形的性质与判定
平行四边形的性质与判定 正方形的性质与判定
菱形的性质与判定
等腰梯形的性质与判定
三角形中位线的性质
夹在两条平行线之间的平行线相等
直角三角形斜边上的中线等于斜边的一半
练习1:(投影)
(1). 在等腰梯形ABCD中,AD‖BC,AB=CD,∠B=40°,则∠A=_____,∠C=_____,∠D=_____.
(2) 菱形的对角线长分别为24和10,则此菱形的周长为___________,面积为____________.
(3)矩形ABCD对角线夹角为60°,AB=2cm则对角线长为 ,矩形面积为 ;
(4)依次连接任意四边形四条边的中点所构成四边形是 ,当四边形是 (图形)时,新的四边形是菱形
2、四边形的性质与判定
角: 角:
性质 边: 判定 边:
对角线: 对角线:
1)通过从角,边,对角线三方面.让学生叙述平行四边形、矩形、菱形、正方形的定义和它们的特殊性质,以及它们的联系与区别。
2)通过图表进一步.说明平行四边形,矩形,菱形,正方形的内在联系。
3、性质定理与判定定理的应用: (例题图1)
例:如图1,平行四边形ABCD的对角线AC的垂直平分线EF与两边AB,CD的延长线分别交于E、F,请你猜一猜,得到新的四边形AECF是什么样的四边形?并证明你的结论。
(三)巩固练习:
练习2 计算与证明题:
1)、如图2,在 ABCD中,已知AB=4cm,
BC=9cm,∠B=30°,求 ABCD的面积。
2)、如图3,在正方形ABCD中
∠ACD 的平分线CF交AD于点F,
EF⊥AC于点E,
①请你猜一猜线段DF与AE是什么关系?
证明你的结论。
②当EF=2cm时,求正方形的边长。
练习3 拓展
(3)如图4,已知正方形ABCD的对角线AC、BD相交O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F。求证:OE=OF
变式:对上述命题,若点E在AC的延长线上,AG ⊥ EB,且交EB的延长于点G,AG的延长线交DB的延长线于点F,其他条件不变(如图5),则结论“OE=OF”还成立吗?如果成立,请给出证明,若不成立,请说明理由。
(4)如图6,四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于点P,若四边形ABCD的面积是18,求DP的长。小明想了个办法:
沿着DP将△ADP剪下来,补到△CDF处,这时PDFB恰好为一个正方形。
①你能证明它是一个正方形吗?②你能求DP的长吗?
(四)小结:(1)特殊四边形我们要从角,边,对角线的变化上认识其特殊性和内在联系
(2)四边形的问题通过添加适当的辅助线转化为三角形问题解决。+
(五)作业 :59页6、7、8题,伴你学45页~46页。
九年级第三章 平行四边形回顾与思考
一、教学目标
1、认识特殊四边形之间的关系,并能证明它们的性质定理和判定定理;+
2、应用所得的结论通过计算和证明解决一些问题;
3、通过证明使学生对证明的必要性有进一步的认识
4、通过四边形的从属关系渗透集合思想。
5、通过理解四种四边形内在联系,培养学生辩证观点。
二、教学重点、难点和疑点
1.重点:应用所得的结论通过计算和证明解决一些问题;
2.难点:特殊四边形之间的关系及性质,利用所得的结论通过计算和证明解决一些问题;
3.疑点:平行四边形,矩形,菱形,正方形之间的共性,特性及从属关系(可以通过列表、画图,简单的关系图,举反例等来说明)。
三、教学方法
归纳法,边讲边练法。
四、教学手段
投影。
五、教学过程 :
(一)、学生完成下列填空:
特殊四边形的联系与区别:
边
角
对角线
平行四边形
对边平行且相等
对角相等
邻角互补
对角线互相平分
矩形
对边平行且相等
四个角都是直角
对角线互相平分且
(4) 圆(概念,性质,定理,位置关系,计算)与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。
正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。
教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。
(三)课程学习目标
1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。
2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。
3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。
4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。
5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。
(5) 图形与变换(图形相似,平移,旋转,轴对称,中心对称)1.通过具体实例认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质;
2.探索简单图形之间的轴对称关系,能够按照要求作出简单图形经过一次或两次轴对称后的图形;认识和欣赏轴对称在现实生活中的应用,能利用轴对称进行简单的图案设计;
3.了解线段垂直平分线的概念,探索并掌握其性质;了解等腰三角形、等边三角的有关概念,探索并掌握它们的性质以及判定方法;
4.能初步应用本章所学的知识解释生活中的现象及解决简单的实际问题,在观察、操作、想象、论证、交流的过程中,发展空间观念,激发学习空间与图形的兴趣。
初中的竞赛主要在于代数,圆及二次函数
『捌』 求随机数学基础答案
自己买去,不要总是要答案,自己思考,你赢定能成功,
『玖』 学习随机数学之前应掌握哪些基础知识
概率论应和测度论一起看,数理统计只要有概率论基础就能看,随机过程必须有概率论或测度论基础,并且最好了解一些泛函分析
『拾』 数学与应用数学都学什么如果自学应该参考哪些书籍
我学的就是这个专业,大一的时候要学数学分析(3个学期),高等代数(2个学期),开始就学这两个基础课,但是比非数学专业的难;上期继续学数学分析,外加常微分方程,期间会学C++,数学实验;以后学的几乎都是选修的数学,但是所谓的选修实际上是从几门数学中选几个作为必修。有微分几何,概率论,复变函数,泛函分析等等。学这个专业挺辛苦的,我们这里大三的星期一五节大课(2个小时),全是数学……
应用数学业务培养目标:本专业培养掌握数学科学的基本理论与基本方法,具备运用数学知识、使用计算机解决实际问题的能力,受到科学研究的初步训练,能在科技、教育和经济部门从事研究、教学工作或在生产经营及管理部门从事实际应用、开发研究和管理工作的高级专门人才。
业务培养要求:本专业学生主要学习数学和应用数学的基础理论、基本方法,受到数学模型、计算机和数学软件方面的基本训练,具有较好的科学素养,初步具备科学研究、教学、解决实际问题及开发软件等方面的基本能力。
毕业生应获得以下几方面的知识和能力: 1.具有扎实的数学基础,受到比较严格的科学思维训练,初步掌握数学科学的思想方法; 2.具有应用数学知识去解决实际问题,特别是建立数学模型的初步能力,了解某一应3. 能熟练使用计算机(包括常用语言、工具及一些数学软件),具有编写简单应用程序的能力; 4.了解国家科学技术等有关政策和法规; 应用数学
5.了解数学科学的某些新发展和应用前景; 6. 有较强的语言表达能力,掌握资料查询、文献检索及运用现代信息技术获取相关信息的基本方法,具有一定的科学研究和教学能力。 主干学科:数学。
主要课程:分析学、代数学、几何学、概率论、物理学、数学模型、数学实验、计算机基础、数值方法、数学史等,以及根据应用方向选择的基本课程。
主要实践性教学环节:包括计算机实习、生产实习、科研训练或毕业论文等,一般安排10~20周。
修业年限:四年。
授予学位:理学学士。
相近专业:信息与计算科学、统计学。