10位同學一次考試的平均成績是X
1. 在一次考試某小組十名同學的平均成績是八十七分前八名名同學的平均成績是九十
(87×10-90×8)÷2-1
=(870-720)÷2-1,
=150÷2-1,
=75-1,
=74(分),
答:第十名考了74分.
故答案為:74.
2. 某班有40人.在一次考試後,按成績排了名次,結果前25名的平均分數比後15名的平均分數多10分.一位同學對
設後15名同來學的平均成績為60分,源則前25名的平均分數為(60+10)=70分,則:
(60×15+70×25)÷40
=2650÷40
=66.25(分),
(60+70)÷2=65(分),
因為65<66.25,所以這樣做,全班的平均分數降低了,
降低了:66.25-65=1.25(分);
答:這樣做,全班的平均分數降低了1.5分.
故答案為:1.25.
3. 甲、乙、丙、丁四位同學,在一次考試中四人的平均分是90分。可是,甲在抄分數是,把自己的分抄成87分,
4乘90=360
4乘88=352
360-352=8
87+8=95
首先確定平均分低了,那甲的實際分數一定是比87高的.
平均分相差8,那就說明分數是87加8
4. 一次數學考試,前10名的同學平均分為87分,前八名的平均分為90分,已知第九名比第十名多2分,第十
前十名的平來均分是八十七分,自則前十名的總分是870分,又前八名的平均分是九十分,則前八名的總分是720分,則第九和第十名的總分是870-720=150分,設第十名的分數為x,則第九名的分數為(x+2)分,所以x+(x+2)=150 解得x=74分,即第十名考了74分。努力學習哈!望採納。
90×8=72087×10=870870-720=150設第9名同學考了x分,第十名同學考了(150-x)分。 x-2=150-x x+x=150+2 2x=152 x=76 所以(150-x)=74分 答:第十名考了74分。
5. 某班有48名同學,一次考試後的數學成績服從正態分布,平均分為80,標准差為10,理論上說在80分到90分的人
|<
∵數學抄成績近似地服從正態分布N(80,10 2 ), P(|x-u|<σ)=0.6826, ∴P(|x-80|<10)=0.6826, 根據正態曲線的對稱性知: 位於80分到90分之間的概率是位於70分到90分之間的概率的一半 ∴理論上說在80分到90分的人數是
故選B. |
6. 一個學習小組有12個同學,一次數學考試,張華請假,其餘11人的平均成績是85分,後來張華補考的成績
比現在的平均成績多出來這5.5分平均分給11個人,也就是85+0.5=85.5
85.5就是新的平均成績
所以,考了 85.5+5.5=91(分)
7. 某班同學一次數學考試的平均成績是89.5分,事後復查發成績計算成績時將一位同學的98分誤作89分計算了,經重
89.7x-98=89.5x-89
0.2x=9
x=45
(98-89)/(89.7-89.5)=45
8. 某班有48名同學,一次考試後數學成績服從正態分布.平均分為80,標准差為10,問從理論上講在80分至90分之
16
9. 10個學生參加一次考試,滿分是100分,這次考試中十個學生的平均分為92,那麼,成績最差的學生可能得到的
只有9個人都考滿分,剩下的那個同學的成績最差,即: 10. 10位同學在一次考試中,最高分是95分,最低分是75分,總平均分是81分,去掉一個最高分和一個最低
80分,過程如下: 熱點內容
|