當前位置:首頁 » 老師輔導 » 輔導高一學生的方法

輔導高一學生的方法

發布時間: 2020-12-22 04:57:05

A. 我要輔導高一的數理化,我該做些什麼准備

我是剛高中畢業的學生,聽了老師,同學的許多學習方法,方法雖然很多,但還是有版許多共通權點的。希望以下能幫助你.1學習數理化,應該買一些好的教輔來做,但你也不要一味做題,而是應該讓做題的效果最好,應多從題目中總結方法,因為現在的高考更重視你的綜合應用能力,而不是想以前一樣,年年都考一種題型,說以你應該多去找做題的方法,再找一些要用到許多方法的題來做,這樣可以大大提高你的考試能力.2同時也不要漠視教材,應為那是基礎,只有基本功打好了,才能去應對高考多變的題型,相信我教材很重要。3一定要上課認真聽講,老師可以說是考了幾十年高考的學生,你認真聽了老師會對你有很大的幫助祝你學習成功

B. 高一學生 底子差 如何進行輔導

可以參考網上名校教學輔導課程的,像愛學網這樣的,一流學校的師資很好,應該會有很多值得你學習參考的地方的。學生底子差,肯定是要從基礎知識學習為主了。

C. 如何輔導高中學生學習

這個要因人而異吧復。制

對於基礎比較薄弱的學生,首先要重點讓他理解書上的概念、定義和公式什麼的,如果這些都不明白的話,刷再多的提也是枉然;其次要把物理問題分類,然後每一類都要給他們講解相應的比較常規容易理解的解題思路,如果學生比較聰明的話,一類問題多幾個思路也無不可。反正在書本上的東西很明晰的情況下要多練,物理是練出來的。

另外對於基礎好一點的學生就比較好辦了。如果你水平比較高的話,重點就放在解題方法的靈活應用,物理思維還有物理模型的構建上了。

希望我說的對你有用。滿意請採納,謝謝。

D. 給高一學生輔導數學~沒經驗啦~該講點什麼 在線等

講函數。你把這大綱列印出來,人家一看到就會覺得你非常非常認真,非常誠懇。

二、函數的有關概念
1.函數的概念:設A、B是非空的數集,如果按照某個確定的對應關系f,使對於集合A中的任意一個數x,在集合B中都有唯一確定的數f(x)和它對應,那麼就稱f:A→B為從集合A到集合B的一個函數.記作: y=f(x),x∈A.其中,x叫做自變數,x的取值范圍A叫做函數的定義域;與x的值相對應的y值叫做函數值,函數值的集合{f(x)| x∈A }叫做函數的值域.

注意:○2如果只給出解析式y=f(x),而沒有指明它的定義域,則函數的定義域即是指能使這個式子有意義的實數的集合;○3 函數的定義域、值域要寫成集合或區間的形式.
定義域補充
能使函數式有意義的實數x的集合稱為函數的定義域,求函數的定義域時列不等式組的主要依據是:(1)分式的分母不等於零; (2)偶次方根的被開方數不小於零; (3)對數式的真數必須大於零;(4)指數、對數式的底必須大於零且不等於1. (5)如果函數是由一些基本函數通過四則運算結合而成的.那麼,它的定義域是使各部分都有意義的x的值組成的集合.(6)指數為零底不可以等於零 (6)實際問題中的函數的定義域還要保證實際問題有意義.
(又注意:求出不等式組的解集即為函數的定義域。)
2. 構成函數的三要素:定義域、對應關系和值域
再注意:(1)構成函數三個要素是定義域、對應關系和值域.由於值域是由定義域和對應關系決定的,所以,如果兩個函數的定義域和對應關系完全一致,即稱這兩個函數相等(或為同一函數)(2)兩個函數相等當且僅當它們的定義域和對應關系完全一致,而與表示自變數和函數值的字母無關。相同函數的判斷方法:①表達式相同;②定義域一致 (兩點必須同時具備)
(見課本21頁相關例2)
值域補充
(1)、函數的值域取決於定義域和對應法則,不論採取什麼方法求函數的值域都應先考慮其定義域. (2).應熟悉掌握一次函數、二次函數、指數、對數函數及各三角函數的值域,它是求解復雜函數值域的基礎。
3. 函數圖象知識歸納
(1)定義:在平面直角坐標系中,以函數 y=f(x) , (x∈A)中的x為橫坐標,函數值y為縱坐標的點P(x,y)的集合C,叫做函數 y=f(x),(x ∈A)的圖象.
C上每一點的坐標(x,y)均滿足函數關系y=f(x),反過來,以滿足y=f(x)的每一組有序實數對x、y為坐標的點(x,y),均在C上 . 即記為C={ P(x,y) | y= f(x) , x∈A }
圖象C一般的是一條光滑的連續曲線(或直線),也可能是由與任意平行與Y軸的直線最多隻有一個交點的若干條曲線或離散點組成。
(2) 畫法
A、描點法:根據函數解析式和定義域,求出x,y的一些對應值並列表,以(x,y)為坐標在坐標系內描出相應的點P(x, y),最後用平滑的曲線將這些點連接起來.
B、圖象變換法(請參考必修4三角函數)
常用變換方法有三種,即平移變換、伸縮變換和對稱變換
(3)作用:
1、直觀的看出函數的性質;2、利用數形結合的方法分析解題的思路。提高解題的速度。
發現解題中的錯誤。
4.快去了解區間的概念
(1)區間的分類:開區間、閉區間、半開半閉區間;(2)無窮區間;(3)區間的數軸表示.
5.什麼叫做映射
一般地,設A、B是兩個非空的集合,如果按某一個確定的對應法則f,使對於集合A中的任意一個元素x,在集合B中都有唯一確定的元素y與之對應,那麼就稱對應f:A B為從集合A到集合B的一個映射。記作「f:A B」
給定一個集合A到B的映射,如果a∈A,b∈B.且元素a和元素b對應,那麼,我們把元素b叫做元素a的象,元素a叫做元素b的原象
說明:函數是一種特殊的映射,映射是一種特殊的對應,①集合A、B及對應法則f是確定的;②對應法則有「方向性」,即強調從集合A到集合B的對應,它與從B到A的對應關系一般是不同的;③對於映射f:A→B來說,則應滿足:(Ⅰ)集合A中的每一個元素,在集合B中都有象,並且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中對應的象可以是同一個;(Ⅲ)不要求集合B中的每一個元素在集合A中都有原象。
6. 常用的函數表示法及各自的優點:
○1 函數圖象既可以是連續的曲線,也可以是直線、折線、離散的點等等,注意判斷一個圖形是否是函數圖象的依據;○2 解析法:必須註明函數的定義域;○3 圖象法:描點法作圖要注意:確定函數的定義域;化簡函數的解析式;觀察函數的特徵;○4 列表法:選取的自變數要有代表性,應能反映定義域的特徵.
注意啊:解析法:便於算出函數值。列表法:便於查出函數值。圖象法:便於量出函數值
補充一:分段函數 (參見課本P24-25)
在定義域的不同部分上有不同的解析表達式的函數。在不同的范圍里求函數值時必須把自變數代入相應的表達式。分段函數的解析式不能寫成幾個不同的方程,而就寫函數值幾種不同的表達式並用一個左大括弧括起來,並分別註明各部分的自變數的取值情況.(1)分段函數是一個函數,不要把它誤認為是幾個函數;(2)分段函數的定義域是各段定義域的並集,值域是各段值域的並集.
補充二:復合函數
如果y=f(u),(u∈M),u=g(x),(x∈A),則 y=f[g(x)]=F(x),(x∈A) 稱為f、g的復合函數。
例如: y=2sinX y=2cos(X2+1)
7.函數單調性
(1).增函數
設函數y=f(x)的定義域為I,如果對於定義域I內的某個區間D內的任意兩個自變數x1,x2,當x1<x2時,都有f(x1)<f(x2),那麼就說f(x)在區間D上是增函數。區間D稱為y=f(x)的單調增區間 (睇清楚課本單調區間的概念)
如果對於區間D上的任意兩個自變數的值x1,x2,當x1<x2 時,都有f(x1)>f(x2),那麼就說f(x)在這個區間上是減函數.區間D稱為y=f(x)的單調減區間.
注意:○1 函數的單調性是在定義域內的某個區間上的性質,是函數的局部性質;
○2 必須是對於區間D內的任意兩個自變數x1,x2;當x1<x2時,總有f(x1)<f(x2) 。
(2) 圖象的特點
如果函數y=f(x)在某個區間是增函數或減函數,那麼說函數y=f(x)在這一區間上具有(嚴格的)單調性,在單調區間上增函數的圖象從左到右是上升的,減函數的圖象從左到右是下降的.
(3).函數單調區間與單調性的判定方法
(A) 定義法:
○1 任取x1,x2∈D,且x1<x2;○2 作差f(x1)-f(x2);○3 變形(通常是因式分解和配方);○4 定號(即判斷差f(x1)-f(x2)的正負);○5 下結論(指出函數f(x)在給定的區間D上的單調性).
(B)圖象法(從圖象上看升降)_
(C)復合函數的單調性
復合函數f[g(x)]的單調性與構成它的函數u=g(x),y=f(u)的單調性密切相關,其規律如下:
函數 單調性
u=g(x) 增 增 減 減
y=f(u) 增 減 增 減
y=f[g(x)] 增 減 減 增
注意:1、函數的單調區間只能是其定義域的子區間 ,不能把單調性相同的區間和在一起寫成其並集. 2、還記得我們在選修里學習簡單易行的導數法判定單調性嗎?

8.函數的奇偶性
(1)偶函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函數.
(2).奇函數
一般地,對於函數f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函數.
注意:○1 函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;函數可能沒有奇偶性,也可能既是奇函數又是偶函數。
○2 由函數的奇偶性定義可知,函數具有奇偶性的一個必要條件是,對於定義域內的任意一個x,則-x也一定是定義域內的一個自變數(即定義域關於原點對稱).
(3)具有奇偶性的函數的圖象的特徵
偶函數的圖象關於y軸對稱;奇函數的圖象關於原點對稱.
總結:利用定義判斷函數奇偶性的格式步驟:○1 首先確定函數的定義域,並判斷其定義域是否關於原點對稱;○2 確定f(-x)與f(x)的關系;○3 作出相應結論:若f(-x) = f(x) 或 f(-x)-f(x) = 0,則f(x)是偶函數;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,則f(x)是奇函數.
注意啊:函數定義域關於原點對稱是函數具有奇偶性的必要條件.首先看函數的定義域是否關於原點對稱,若不對稱則函數是非奇非偶函數.若對稱,(1)再根據定義判定; (2)有時判定f(-x)=±f(x)比較困難,可考慮根據是否有f(-x)±f(x)=0或f(x)/f(-x)=±1來判定; (3)利用定理,或藉助函數的圖象判定 .
9、函數的解析表達式
(1).函數的解析式是函數的一種表示方法,要求兩個變數之間的函數關系時,一是要求出它們之間的對應法則,二是要求出函數的定義域.
(2).求函數的解析式的主要方法有:待定系數法、換元法、消參法等,如果已知函數解析式的構造時,可用待定系數法;已知復合函數f[g(x)]的表達式時,可用換元法,這時要注意元的取值范圍;當已知表達式較簡單時,也可用湊配法;若已知抽象函數表達式,則常用解方程組消參的方法求出f(x)
10.函數最大(小)值(定義見課本p36頁)
○1 利用二次函數的性質(配方法)求函數的最大(小)值○2 利用圖象求函數的最大(小)值○3 利用函數單調性的判斷函數的最大(小)值:如果函數y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函數y=f(x)在x=b處有最大值f(b);如果函數y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函數y=f(x)在x=b處有最小值f(b);

第二章 基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果 ,那麼 叫做 的 次方根(n th root),其中 >1,且 ∈ *.
當 是奇數時,正數的 次方根是一個正數,負數的 次方根是一個負數.此時, 的 次方根用符號 表示.式子 叫做根式(radical),這里 叫做根指數(radical exponent), 叫做被開方數(radicand).
當 是偶數時,正數的 次方根有兩個,這兩個數互為相反數.此時,正數 的正的 次方根用符號 表示,負的 次方根用符號- 表示.正的 次方根與負的 次方根可以合並成± ( >0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作 。
注意:當 是奇數時, ,當 是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:

0的正分數指數冪等於0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義後,指數的概念就從整數指數推廣到了有理數指數,那麼整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(1) ? ;
(2) ;
(3) .
(二)指數函數及其性質
1、指數函數的概念:一般地,函數 叫做指數函數(exponential function),其中x是自變數,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
2、指數函數的圖象和性質
a>1 0<a<1

圖象特徵 函數性質

向x、y軸正負方向無限延伸 函數的定義域為R
圖象關於原點和y軸不對稱 非奇非偶函數

函數圖象都在x軸上方 函數的值域為R+
函數圖象都過定點(0,1)

自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
在第一象限內的圖象縱坐標都大於1 在第一象限內的圖象縱坐標都小於1

在第二象限內的圖象縱坐標都小於1 在第二象限內的圖象縱坐標都大於1

圖象上升趨勢是越來越陡 圖象上升趨勢是越來越緩 函數值開始增長較慢,到了某一值後增長速度極快; 函數值開始減小極快,到了某一值後減小速度較慢;
注意:利用函數的單調性,結合圖象還可以看出:
(1)在[a,b]上, 值域是 或 ;
(2)若 ,則 ; 取遍所有正數當且僅當 ;
(3)對於指數函數 ,總有 ;
(4)當 時,若 ,則 ;
二、對數函數
(一)對數
1.對數的概念:一般地,如果 ,那麼數 叫做以 為底 的對數,記作: ( — 底數, — 真數, — 對數式)
說明:○1 注意底數的限制 ,且 ;
○2 ;
○3 注意對數的書寫格式.
兩個重要對數:
○1 常用對數:以10為底的對數 ;
○2 自然對數:以無理數 為底的對數的對數 .
2、 對數式與指數式的互化

對數式 指數式
對數底數 ← → 冪底數
對數 ← → 指數
真數 ← → 冪
(二)對數的運算性質
如果 ,且 , , ,那麼:
○1 ? + ;
○2 - ;
○3 .
注意:換底公式
( ,且 ; ,且 ; ).
利用換底公式推導下面的結論(1) ;(2) .
(二)對數函數
1、對數函數的概念:函數 ,且 叫做對數函數,其中 是自變數,函數的定義域是(0,+∞).
注意:○1 對數函數的定義與指數函數類似,都是形式定義,注意辨別。
如: , 都不是對數函數,而只能稱其為對數型函數.
○2 對數函數對底數的限制: ,且 .
2、對數函數的性質:
a>1 0<a<1

圖象特徵 函數性質

函數圖象都在y軸右側 函數的定義域為(0,+∞)
圖象關於原點和y軸不對稱 非奇非偶函數
向y軸正負方向無限延伸 函數的值域為R
函數圖象都過定點(1,0)

自左向右看,
圖象逐漸上升 自左向右看,
圖象逐漸下降 增函數 減函數
第一象限的圖象縱坐標都大於0 第一象限的圖象縱坐標都大於0

第二象限的圖象縱坐標都小於0 第二象限的圖象縱坐標都小於0

(三)冪函數
1、冪函數定義:一般地,形如 的函數稱為冪函數,其中 為常數.
2、冪函數性質歸納.
(1)所有的冪函數在(0,+∞)都有定義,並且圖象都過點(1,1);
(2) 時,冪函數的圖象通過原點,並且在區間 上是增函數.特別地,當 時,冪函數的圖象下凸;當 時,冪函數的圖象上凸;
(3) 時,冪函數的圖象在區間 上是減函數.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.

第三章 函數的應用
一、方程的根與函數的零點
1、函數零點的概念:對於函數 ,把使 成立的實數 叫做函數 的零點。
2、函數零點的意義:函數 的零點就是方程 實數根,亦即函數 的圖象與 軸交點的橫坐標。即:
方程 有實數根 函數 的圖象與 軸有交點 函數 有零點.
3、函數零點的求法:
求函數 的零點:
○1 (代數法)求方程 的實數根;
○2 (幾何法)對於不能用求根公式的方程,可以將它與函數 的圖象聯系起來,並利用函數的性質找出零點.
4、二次函數的零點:
二次函數 .
1)△>0,方程 有兩不等實根,二次函數的圖象與 軸有兩個交點,二次函數有兩個零點.
2)△=0,方程 有兩相等實根(二重根),二次函數的圖象與 軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程 無實根,二次函數的圖象與 軸無交點,二次函數無零點.

E. 高中學習方法指導

其實不用做很多題的,你也沒有時間做,
和老師、同學交流很重要,尤其是同學。因為同齡人的思維方式教接近
關鍵是每次的考試題,都是年級備課組老師們精心挑選的,結合考綱的優秀試題
要反反復復的做、體會
然後是學校發的資料書,老師課上例題、筆記裡面每一題都要認真過關
不斷整理錯題,鞏固雙基(基礎知識、基本技能——最重要)
如果現在成績不好千萬不要攻難題,要把握選填、前幾道大題 不失分(重要)
避免過失性丟分(計算出錯、審題出錯)(重要)
基礎知識丟分(重要的公式定理、基本題型的解題方法——雙基)(重要)
如果LZ有心把每次考試的上述兩項丟分統計出來,會嚇一跳哦

數學要保證填選、前幾到大題
物理的動力學、電學只要保證考試題、資料題每到都透徹
可能磁場有點麻煩

化學、生物一定要看教材,熟教材,切記、切記——不然吃大虧
要做到每一題一看就知道是教材哪章、哪節的知識點
一定要重視理綜,關鍵是考試時時間的控制
這些都做到了話,我覺得數學起碼130(滿150),物理起碼100(滿120)
化學起碼100(滿108),生物起碼65(滿70)

如果時間實在很充足就適量做些課外題
盡量不要補習(如果實在太差,基礎極其不牢——就是平時根本沒學的話就去補習)
多自己安靜上自習(重要)或多和同學交流(集體的智慧是無窮的)

F. 如何輔導高中生自卑心理

一)提升自卑學生的自我效能感

自我效能是著名美國心理學家班杜拉提出來的,
他對自我效能的定義是一個人對
自己有能力完成特定任務的信念。
簡單的說,
自我效能感就是一個人的自信程度,
舉例來說,
如果你是學生,
那麼你的自信程度可以體現在自己是否有能力去完成
老師布置的作業,是否有足夠的信心通過眼前的期中或者期末考試。在教學中,
我們經常遇到這樣的情況:學生的學習興趣低落,認為學習是一件很難的事情,
對學習沒有興趣也沒有信心,
不交作業或應付作業、
上課不聽課開小差等現象更
是時有發生。而這些學生並非都是智力低下者,他們所遇到的困難也各不相同,
如「學習習慣不良」

「學習效率低」

「自信心不強」等等,但都有一個共同點,
那就是—自我效能感偏低。
所以如何培養學生自我效能感,
讓他們不斷品嘗到成
功的喜悅,使其健康快樂地成長,是擺到我們教師面前的一個緊迫任務。於是

2
我們想從培養學生的學業自我效能感入手,
即增強學生對自己完成學習任務能力
的信心和信念,
使學生相信自己有能力有實力學好,
從而幫助學生逐漸克服內心
的自卑感和不自信。增強學生自我效能感的具體教學策略如下:

策略一、讓學生感受師愛,產生積極的情緒情感體驗

美國著名的人文主義心理學家馬斯洛說過:
「人性中最深切的本能是對贊賞的渴
求。
」對於自我效能感偏低的學生,教師應給予更多的關心,不要過多地指責他
們不努力、不認真學,而應曉之以理、動之以情,注意發現他們的微小進步並予
以鼓勵,使學生在我們的鼓勵中逐步前進。

⒈適用對象:缺乏老師關愛的學生,自信心不足的學生。

⒉具體實施方法和教學案例:

⑴語言表達法

語言表達法即用語言表達教師之愛。教師在說話時,用詞的選擇、語調的高低、
語頻的快慢、語氣的柔硬,以及手勢、表情和眼神,都可以傳導師愛。

案例:學生凌某,成績很差,經常開紅燈,性格內向,平時上課很少舉手回答問
題。
一次上公開課時我發現她怯生生地想舉手,
便讓她起來回答問題。
被點到後,
她很緊張,
小臉漲得通紅,
用很小的聲音說出了一個錯誤的答案。
當其他學生舉
手更正時,
她很尷尬。
這時我意識到這是很好的機會,
便當著全班同學的面告訴
她:
「你今天的表現真棒,加油,老師相信你會成功的。
」一剎那間,我看見了她
眼裡希望的目光閃現。
在後來的課堂中,
她的表現果然有進步,
學習成績也慢慢
有所提高。

⑵行動感召法

行動感召法即教師以自己的行動表明對學生的愛,以使他們受到感召。

案例:學生狄某,全校出名的差生,上課專門搗亂,不愛學習,讓所有的任課老
師頭痛。
新接班的班主任在開學第一天點名時,
他以一種挑釁的眼睛瞪著班主任,
但當班主任宣布紀律委員的名單再次點到了他的名字時,
他張大了嘴,
睜大了眼
睛,但不是挑釁的目光,卻是迷惑的眼神,接著不好意思地低下頭來,顯出一付
難為情的樣子。下課後,班主任找到了他,耐心地告訴他紀律委員的職責,勉勵
他做好。
他從教師一串列動中體驗到了對他的信任和尊重,
後來上課時認真多了,
學習也有了一些進步。
其實學生的心是很敏感的,
教師對他們的愛他不會無動於
衷,所以行動感召法是一種傳導師愛的好方法。

⑶排憂解難法

一個人碰到困難而得到幫助,身處「逆境」而得到關心,往往會在心靈里留下很
深的記憶,
甚至終生難忘。
學生也有各式各樣的困難,
也有處於
「逆境」
的時候,
此時,
他們對愛的渴求更甚。
如果教師不失時機地將愛無私地奉獻,
他們將會銘
記終生。學生中的「憂」和「難」多種多樣,有學習上的:某一門功課上不去,
或因病因事掉了課和考試失誤而焦急等;有思想上的:為未評上「三好生」
、因
犯錯誤挨批評受處分而難過等;有身體上的:身體有某種殘疾或缺陷被人嘲笑,
或因患某種慢性病而煩惱等;有生活上的:如丟失了東西,家庭有了不幸等;還
有人際關繫上的:
如經常受某同學的欺負,
在同學中比較孤立,
在某件事上被同
學誤解而十分委屈等等。看準了學生中的「憂」和「難」
,急學生所急、憂學生
所憂,
腳踏實地地為學生排憂解難,
或給以思想上的開導和鼓勵,
或採取措施創
造必要的條件,
具體加以解決

G. 新高一的學生去輔導班有用嗎

輔導班有用嗎?哈爾濱暑期輔導班哪家好?在暑假期間,很多新高一的同學都不知道應不應該去輔導班學習,有些家長覺得花錢在外面學習不如在家裡學習,有的家長覺得輔導機構的老師都是專業的,可以交給學生很多學習技巧和方法,能更好的銜接初高中的學科知識。
對於學生來說,初中升高中是一種全新的變化,學習方法內容強度都是不同的,只有做好初高中知識的銜接,才能讓學生更好的步入高中學習生活。
很多同學覺得自己就可以在家裡學習准備高中的學習,但是往往一進入高中學習之後,卻發現和自己想像的完全不一樣,跟不上學校的學習強度,只能重頭再來,白白浪費了寶貴的時間。和初中的學科知識相比,高中的知識點變得難度高,數量多,不僅要求孩子提高學習能力,快速接受理解這些知識點,還要提高思維能力,做題時可以舉一反三,不在是初中時只做題就能提升分數的時候了。如果沒有辦法適應高中的學習生活,成績可能會一落千丈,所以新高一的學生應該充分利用暑假的時間,在專業的補習機構讓專業的老師幫助學生銜接好初高中的知識點。
而且輔導班其實不會佔用太多的暑假時間,尤其是銜接的課程,只要讓學生掌握好新高一的知識點,為以後的學習打好基礎,就能為高中的學習打下一個良好的開端。
新高一的學生去輔導班有用嗎?哈爾濱暑期輔導班哪家好?暑期用不用上輔導班也是根據學生的實際情況來看的,如果家裡有時間有條件的又有這種需求的,就可以選擇一個質量好口碑好的輔導班,如果學生平時學習成績很好,家長也放心,在暑假期間就可以鞏固鞏固初中知識,簡單翻翻高中的教材,能做到熟悉就可以。

H. 高一學習方法指導

怎樣才能學好數學

要回答這個似乎非常簡單:把定理、公式都記住,勤思好問,多做幾道題,不就行了。
事實上並非如此,比如:有的同學把書上的黑體字都能一字不落地背下來,可就是不會用;有的同學不重視知識、方法的產生過程,死記結論,生搬硬套;有的同學眼高手低,「想」和「說」都沒問題,一到「寫」和「算」,就漏洞百出,錯誤連篇;有的同學懶得做題,覺得做題太辛苦,太枯燥,負擔太重;也有的同學題做了不少,輔導書也看了不少,成績就是上不去,還有的同學復習不得力,學一段、丟一段。
究其原因有兩個:一是學習態度問題:有的同學在學習上態度曖昧,說不清楚是進取還是退縮,是堅持還是放棄,是維持還是改進,他們勤奮學習的決心經常動搖,投入學習的精力也非常有限,思維通常也是被動的、淺層的和粗放的,學習成績也總是徘徊不前。反之,有的同學學習目的明確,學習動力強勁,他們擁有堅韌不拔的意志、刻苦鑽研的精神和自主學習的意識,他們總是想方設法解決學習中遇到的困難,主動向同學、老師求教,具有良好的自我認識能力和創造學習條件的能力。二是學習方法問題:有的同學根本就不琢磨學習方法,被動地跟著老師走,上課記筆記,下課寫作業,機械應付,效果平平;有的同學今天試這種方法、明天試那種方法,「病急亂投醫」,從不認真領會學習方法的實質,更不會將多種學習方法融入自己的日常學習環節,養成良好的學習習慣;更多的同學對學習方法存在片面的、甚至是錯誤的理解,比如,什麼叫「會了」?是「聽懂了」還是「能寫了」,或者是「會講了」?這種帶有評價性的體驗,對不同的學生來說,差異是非常大的,這種差異影響著學生的學習行為及其效果。
由此可見,正確的學習態度和科學的學習方法是學好數學的兩大基石。這兩大基石的形成又離不開平時的數學學習實踐,下面就幾個數學學習實踐中的具體問題談一談如何學好數學。

一、數學運算
運算是學好數學的基本功。初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程。初中運算能力不過關,會直接影響高中數學的學習:從目前的數學評價來說,運算準確還是一個很重要的方面,運算屢屢出錯會打擊學生學習數學的信心,從個性品質上說,運算能力差的同學往往粗枝大葉、不求甚解、眼高手低,從而阻礙了數學思維的進一步發展。從學生試卷的自我分析上看,會做而做錯的題不在少數,且出錯之處大部分是運算錯誤,並且是一些極其簡單的小運算,如71-19=68,(3+3)2=81等,錯誤雖小,但決不可等閑視之,決不能讓一句「馬虎」掩蓋了其背後的真正原因。幫助學生認真分析運算出錯的具體原因,是提高學生運算能力的有效手段之一。在面對復雜運算的時候,常常要注意以下兩點:
①情緒穩定,算理明確,過程合理,速度均勻,結果准確;
②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚。

二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提。
★什麼是理解?
按照建構主義的觀點,理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的。所以理解是個體對外部或內部信息進行主動的再加工過程,是一種創造性的「勞動」。
理解的標準是「准確」、「簡單」和「全面」。「准確」就是要抓住事物的本質;「簡單」就是深入淺出、言簡意賅;「全面」則是「既見樹木,又見森林」,不重不漏。對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法。
★什麼是記憶?
一般地說,記憶是個體對其經驗的識記、保持和再現,是信息的輸入、編碼、儲存和提取。藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到「拋物線」三個字,你就會想到:拋物線的定義是什麼?標准方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查找、對照,這樣印象就會更加深刻。另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函數一章中,所有的公式都是以三角函數定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘。
總之,分階段地整理數學基礎知識,並能在理解的基礎上進行記憶,可以極大地促進數學的學習。

三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路。
1、如何保證數量?
① 選准一本與教材同步的輔導書或練習冊。
② 做完一節的全部練習後,對照答案進行批改。千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、泄氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:「先做後看」與「先看後測」。
③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上。
④每天保證1小時左右的練習時間。
2、如何保證質量?
①題不在多,而在於精,學會「解剖麻雀」。充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯系,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一。
②落實:不僅要落實思維過程,而且要落實解答過程。
③復習:「溫故而知新」,把一些比較「經典」的題重做幾遍,把做錯的題當作一面「鏡子」進行自我反思,也是一種高效率的、針對性較強的學習方法。

四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求。比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有「山重水復疑無路,柳暗花明又一村」的感覺。比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理。應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法。
總而言之,只要我們重視運算能力的培養,扎扎實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,我們就一定能早日進入數學學習的自由王國。

很多人在考試時總考不出自己的實際水平,拿不到理想的分數,究其原因,就是心理素質不過硬,考試時過於緊張的緣故,還有就是把考試的分數看得太重,所以才會導致考試失利,你要學會換一種方式來考慮問題,你要學會調整自己的心態,人們常說,考試考得三分是水平,七分是心理,過於地追求往往就會失去,就是這個緣故;不要把分數看得太重,即把考試當成一般的作業,理清自己的思路,認真對付每一道題,你就一定會考出好成績的;你要學會超越自我,這句話的意思就是,心裡不要總想著分數、總想著名次;只要我這次考試的成績比我上一次考試的成績有所提高,哪怕是只高一分,那我也是超越了自我;這也就是說,不與別人比成績,就與自己比,這樣你的心態就會平和許多,就會感到沒有那麼大的壓力,學習與考試時就會感到輕松自如的;你試著按照這種方式來調整自己,你就會發現,在不經意中,你的成績就會提高許多;
這就是我的經驗之談,媽媽教給我的道理,使我順利地度過了中學階段,也使我的成績從高一班上的30多名到高三時就進入了年級的前10名,並且沒有感到絲毫的壓力,學得很輕松自如,你不妨也試一試,但願我的經驗能使你的壓力有所減輕、成績有所提高,那我也就感到欣慰了;
最祝你學習進步!
別 的 我 也 不懂啦!

I. 新高一學生買什麼輔導資料好

高一的學生可以買的就回來,我很多,比如說不三角教材幫總都是非常好的選擇,高中必刷題也是一個比較好的東西。

J. 作為一個輔導老師,如何對初中升高中的學生進行輔導 才能使效果最好

你自已要先了解知識點歸納它,對學生的性格也要有所了解,有些學生是版懶,有些學生做無用功權,最主要是學習方法,你要把學習的方法與知識點教給學生,要鞭策懶的學生,用生動有趣的教學方法,學生不喜歡死板板 的課,要以學生的角度出發

熱點內容
武漢大學學生會輔導員寄語 發布:2021-03-16 21:44:16 瀏覽:612
七年級學生作文輔導學案 發布:2021-03-16 21:42:09 瀏覽:1
不屑弟高考成績 發布:2021-03-16 21:40:59 瀏覽:754
大學畢業證會有成績單 發布:2021-03-16 21:40:07 瀏覽:756
2017信陽學院輔導員招聘名單 發布:2021-03-16 21:40:02 瀏覽:800
查詢重慶2018中考成績查詢 發布:2021-03-16 21:39:58 瀏覽:21
結業考試成績怎麼查詢 發布:2021-03-16 21:28:40 瀏覽:679
14中醫醫師資格筆試考試成績查分 發布:2021-03-16 21:28:39 瀏覽:655
名著賞析課程標准 發布:2021-03-16 21:27:57 瀏覽:881
北京大學商業領袖高端培訓課程 發布:2021-03-16 21:27:41 瀏覽:919