化工课程设计基础
❶ 化工工艺的课程设计答辩问题有哪些
结合你所设计的课题,从基础理论到实现过程装备以及达到的技术指标等都会涉及。
❷ 化工原理列管式换热器课程设计
转载,供参考:列管式换热器的设计和选用(1) 列管式换热器的设计和选用应考虑的问题
◎ 冷、热流体流动通道的选择
具体选择冷、热流体流动通道的选择
在换热器中,哪一种流体流经管程,哪一种流经壳程,下列几点可作为选择的一般原则:
a) 不洁净或易结垢的液体宜在管程,因管内清洗方便。
b) 腐蚀性流体宜在管程,以免管束和壳体同时受到腐蚀。
c) 压力高的流体宜在管内,以免壳体承受压力。
d) 饱和蒸汽宜走壳程,因饱和蒸汽比较清洁,表面传热系数与流速无关,而且冷凝液容易排出。
e) 流量小而粘度大( )的流体一般以壳程为宜,因在壳程Re>100即可达到湍流。但这不是绝对的,如流动阻力损失允许,将这类流体通入管内并采用多管程结构,亦可得到较高的表面传热系数。
f) 若两流体温差较大,对于刚性结构的换热器,宜将表面传热系数大的流体通入壳程,以减小热应力。
g) 需要被冷却物料一般选壳程,便于散热。
以上各点常常不可能同时满足,应抓住主要方面,例如首先从流体的压力、防腐蚀及清洗等要求来考虑,然后再从对阻力降低或其他要求予以校核选定。
◎ 流速的选择
常用流速范围流速的选择
流体在管程或壳程中的流速,不仅直接影响表面传热系数,而且影响污垢热阻,从而影响传热系数的大小,特别对于含有泥沙等较易沉积颗粒的流体,流速过低甚至可能导致管路堵塞,严重影响到设备的使用,但流速增大,又将使流体阻力增大。因此选择适宜的流速是十分重要的。根据经验,表4.7.1及表4.7.2列出一些工业上常用的流速范围,以供参考。
表4.7.1 列管换热器内常用的流速范围流体种类流速 m/s管程壳程一般液体
宜结垢液体
气 体0.5~0.3
>1
5~300.2~1.5
>0.5
3~15
表4.7.2 液体在列管换热器中流速(在钢管中)液体粘度 最大流速 m/s>1500
1000~500
500~100
100~53
35~1
>10.6
0.75
1.1
1.5
1.8
2.4◎ 流动方式的选择
流动方式选择流动方式的选择
除逆流和并流之外,在列管式换热器中冷、热流体还可以作各种多管程多壳程的复杂流动。当流量一定时,管程或壳程越多,表面传热系数越大,对传热过程越有利。但是,采用多管程或多壳程必导致流体阻力损失,即输送流体的动力费用增加。因此,在决定换热器的程数时,需权衡传热和流体输送两方面的损失。
当采用多管程或多壳程时,列管式换热器内的流动形式复杂,对数平均值的温差要加以修正,具体修正方法见4.4节。
◎ 换热管规格和排列的选择
具体选择 换热管规格和排列的选择
换热管直径越小,换热器单位体积的传热面积越大。因此,对于洁净的流体管径可取小些。但对于不洁净或易结垢的流体,管径应取得大些,以免堵塞。考虑到制造和维修的方便,加热管的规格不宜过多。目前我国试行的系列标准规定采用 和 两种规格,对一般流体是适应的。此外,还有 ,φ57×2.5的无缝钢管和φ25×2, 的耐酸不锈钢管。
按选定的管径和流速确定管子数目,再根据所需传热面积,求得管子长度。实际所取管长应根据出厂的钢管长度合理截用。我国生产的钢管长度多为6m、9m,故系列标准中管长有1.5,2,3,4.5,6和9m六种,其中以3m和6m更为普遍。同时,管子的长度又应与管径相适应,一般管长与管径之比,即L/D约为4~6。
管子的排列方式有等边三角形和正方形两种(图4.7.11a,图4.7.11b)。与正方形相比,等边三角形排列比较紧凑,管外流体湍动程度高,表面传热系数大。正方形排列虽比较松散,传热效果也较差,但管外清洗方便,对易结垢流体更为适用。如将正方形排列的管束斜转45°安装(图4.7.11c),可在一定程度上提高表面传热系数。
图4.7.11 管子在管板上的排列
◎ 折流挡板
折流挡板间距的具体选择折流挡板
安装折流挡板的目的是为提高管外表面传热系数,为取得良好的效果,挡板的形状和间距必须适当。
对圆缺形挡板而言,弓形缺口的大小对壳程流体的流动情况有重要影响。由图4.7.12可以看出,弓形缺口太大或太小都会产生"死区",既不利于传热,又往往增加流体阻力。
a.切除过少b.切除适当 c.切除过多
图4.7.12挡板切除对流动的影响
挡板的间距对壳体的流动亦有重要的影响。间距太大,不能保证流体垂直流过管束,使管外表面传热系数下降;间距太小,不便于制造和检修,阻力损失亦大。一般取挡板间距为壳体内径的0.2~1.0倍。我国系列标准中采用的挡板间距为:
固定管板式有100,150,200,300,450,600,700mm七种
浮头式有100,150,200,250,300,350,450(或480),600mm八种。(2)流体通过换热器时阻力的计算
换热器管程及壳程的流动阻力,常常控制在一定允许范围内。若计算结果超过允许值时,则应修改设计参数或重新选择其他规格的换热器。按一般经验,对于液体常控制在104~105Pa范围内,对于气体则以103~104Pa为宜。此外,也可依据操作压力不同而有所差别,参考下表。换热器操作允许压降△P换热器操作压力P(Pa)允许压降△P<105 (绝对压力)
0~105 (表压)
>105 (表压)0.1P
0.5P
>5×104 Pa◎ 管程阻力
管程阻力可按一般摩擦阻力计算式求得。
具体计算公式管程阻力损失
管程阻力损失可按一般摩擦阻力计算式求得。但管程总的阻力 应是各程直管摩擦阻力 、每程回弯阻力 以及进出口阻力 三项之和。而 相比之下常可忽略不计。因此可用下式计算管程总阻力损失 :
式中 每程直管阻力 ;
每程回弯阻力 ;
Ft-结构校正系数,无因次,对于 的管子,Ft=1.4,对于 的管子Ft=1.5;
Ns-串联的壳程数,指串联的换热器数;
Np-管程数;
由此式可以看出,管程的阻力损失(或压降)正比于管程数Np的三次方,即
∝
对同一换热器,若由单管程改为两管程,阻力损失剧增为原来的8倍,而强制对流传热、湍流条件下的表面传热系数只增为原来的1.74倍;若由单管程改为四管程,阻力损失增为原来的64倍,而表面传热系数只增为原来的3倍。由此可见,在选择换热器管程数目时,应该兼顾传热与流体压降两方面的得失。
◎ 壳程阻力
对于壳程阻力的计算,由于流动状态比较复杂,计算公式较多,计算结果相差较大。
埃索法计算公式壳程阻力损失
对于壳程阻力损失的计算,由于流动状态比较复杂,提出的计算公式较多,所得计算结果相差不少。下面为埃索法计算壳程阻力损失的公式:
式中 -壳程总阻力损失, ;
-流过管束的阻力损失, ;
-流过折流板缺口的阻力损失, ;
Fs-壳程阻力结垢校正系数,对液体可取Fs=1.15,对气体或可凝蒸汽取Fs=1.0;
Ns-壳程数;
又管束阻力损失
折流板缺口阻力损失
式中 -折流板数目;
-横过管束中心的管子数,对于三角形排列的管束, ;对于正方形排列的管束, , 为每一壳程的管子总数;
B-折流板间距,m;
D-壳程直径,m;
-按壳程流通截面积或按其截面积 计算所得的壳程流速,m/s;
F-管子排列形式对压降的校正系数,对三角形排列F=0.5,对正方形排列F=0.3,对正方形斜转45°,F=04;
-壳程流体摩擦系数,根据 ,由图4.7.13求出(图中t为管子中心距),当 亦可由下式求出:
因 , 正比于 ,由式4.7.4可知,管束阻力损失 ,基本上正比于 ,即
∝
若挡板间距减小一半, 剧增8倍,而表面传热系数 只增加1.46倍。因此,在选择挡板间距时,亦应兼顾传热与流体压降两方面的得失。同理,壳程数的选择也应如此。
图4.7.13 壳程摩擦系数f0与Re0的关系列管式换热器的设计和选用(续)(3)列管式换热器的设计和选用的计算步骤
设有流量为去qm,h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程:
当Q和 已知时,要求取传热面积A必须知K和 则是由传热面积A的大小和换热器结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。
◎ 初选换热器的规格尺寸
◆ 初步选定换热器的流动方式,保证温差修正系数 大于0.8,否则应改变流动方式,重新计算。
◆ 计算热流量Q及平均传热温差△tm,根据经验估计总传热系数K估,初估传热面积A估。
◆ 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 ◎ 计算管、壳程阻力
在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数NP和折流板间距B再计算压力降是否合理。这时NP与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。
◎ 核算总传热系数
分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。
◎ 计算传热面积并求裕度
根据计算的K计值、热流量Q及平均温度差△tm,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积AP大于A020%左右为宜。即裕度为20%左右,裕度的计算式为:
换热器的传热强化途径如欲强化现有传热设备,开发新型高效的传热设备,以便在较小的设备上获得更大的生产能力和效益,成为现代工业发展的一个重要问题。
依总传热速率方程:
强化方法:提高 K、A、 均可强化传热。
◎提高传热系数K
热阻主要集中于 较小的一侧,提高 小的一侧有效。
◆ 降低污垢热阻
◆ 提高表面传热系数
提高 的方法:
无相变化传热:
1) 加大流速;
2)人工粗造表面;
3)扰流元件。 有相变化传热:
蒸汽冷凝 :
1)滴状冷凝,
2)不凝气体排放,
3)气液流向一致 ,
4)合理布置冷凝面,
5)利用表面张力 (沟槽 ,金属丝)液体沸腾:
1)保持核状沸腾,
2) 制造人工表面,增加汽化核心数。
◎ 提高传热推动力
加热蒸汽P ,
◎ 改变传热面积A
关于传热面积A的改变,不以增加换热器台数,改变换热器的尺寸来加大传热面积A,而是通过对传热面的改造,如开槽及加翅片、以不同异形管代替光滑圆管等措施来加大传热面积以强化传热过程。
❸ 有化工类课程设计代做的高人吗急急急急 有的话说一声 我给你发课题
化工类的。。我尅可以给弄。。来。。
❹ 化工原理课程设计:丙酮70% 水30% 处理量6500t/年 得含水量小于等于0.5的或丙酮回收率98% 塔底丙酮小于
[ 查 ]
❺ 化工原理课程设计任务书(板式塔设计)
想当年我们都做过,计算好繁琐,图纸又多。
想做出来不是件容易的是,找找上一届的师兄、师姐吧
❻ 需要做一个化工原理课程设计,本人对化工原理不感冒,所以不懂,所以大家帮帮忙 为期两个星期,拜托大家了
拜托啊,你是化工专业的吧。化工原理在化工专业里是最有用和最有趣的课程了,而且在以后的工作中用处十分广泛。如果你连化工原理都不感兴趣,那么热力学、物化、有机、反应工程对你来说那就更杯具了。建议你如果想继续这门专业,认真学习化工原理,十分重要。
❼ 化工机械基础课程设计 柴油卧式储罐
化工机械基础课程设计柴油卧式储罐我们有完整的。
❽ 高分急求化工原理课程设计《二次蒸汽冷凝器》技术要求
我有。 怎么给你?
❾ 化工原理课程设计水吸收二氧化碳填料塔模板
主要部件有塔体、填料及支承、流体分布器及再分布器、除沫器等。操作时,液体自塔上部进入,并通过液体分布气均匀喷洒于塔截面上,并在填料表面呈膜状流下;气体自塔下部进入,通过填料层中的空隙由塔顶排出。气液两相在液膜表面进行传质。
填料不仅提供了气液两相的接触表面,而且促使气液两相分散,液膜不断更新。填料性能可以由以下三方面予以评价。
⑴ 比表面积a:填料应提供尽可能多的表面积,以单位填充体积所具有的填料表面来表示填料的这一特性,称为比表面积a,单位为m2/m3。
⑵ 空隙率ε:单位体积填料所具有的空隙体积,称为空隙率。气体是在填料间的空隙内流动的,为减少气体的流动阻力,提高填料塔的允许气速,填料层应有尽可能大的空隙率。
⑶ 填料的几何形状:比表面积、空隙率大致相同而形状不同的两种填料,在流体力学和传质性能上可有显著的差别,但目前对填料的几何形状还没有定量的表达。
3、几种常用填料
常用填料有散装填料和规整填料,材质有实体材料和网体材料。
1、液体
理想的流动状态是自上而下,沿填料表面成膜状流动,液膜从一个填料到另一个填料不断更新。要求液体在填料表面铺展成膜、液体在塔内的分布要均匀、液膜厚度要合适。
液体在乱堆填料中有一定的自分布能力。因此,对于小塔,可利用自分布能力,预分布要求校低;对于大塔,很难利用填料的自分布能力达到全塔截面的分布均匀,对初始分布要求校高;另外,填料层内可能出现沟流现象或壁流现象,需对液体进行再分布。
液体在塔内的液膜厚度与持液量有关,持液量是单位填充体积所具有的液体量。喷淋量大,持液量也大,液膜厚度增加;在正常操作的气速范围内,气速的增加,对液膜厚度的影响不大。
2、气体
气体在填料塔内在压强差的推动下自下而上穿过填料空隙上升,并与液膜接触进行传质。气体通过填料层的压降与气速及液体流量等因素有关。
当液体量为零时,干填料的压降Δp随气速u的增大而增大。
当有液体喷淋时,液体量一定,气速u增大,压降Δp增大,相同气速下压降Δp较干填料的压降高。在气速u较小时,气速u增大,液膜厚度变化不大。当气速u增大到某一值时,液膜厚度开始增大,持液量也增大,出现拦液现象,此时,填料层压降与空塔速度关系曲线的斜率增大,此点称为载点。自载点以后,气速u继续增大到某一值时,持液量大增,液体积累出现液泛现象,此气速值称为液泛气速。
液体量增大,泛点气速下降,在相同气速下,液体量大,压降也大。
3、液泛:
液泛是填料塔的非正常操作。发生液泛时,液体不能顺利流下,气液传质不能正常进行。在泛点之前,气体为连续相,液体为分散相;泛点之后,气体为分散相,液体为连续相。泛点又称为转相点,此时,压降Δp剧增,液体返混和气体液沫夹带的现象严重,传质效果极差。
设计时,操作气速=50%~80%的泛点气速。泛点气速可根据泛点关联图估计。
4、填料塔的操作范围
当液体量一定时,若气体量很小,传质过程主要靠扩散进行,传质效果不好;气体量很大,将会导致液泛发生。
当气体量一定时,若液体量很小,会有部分填料得不到润湿,传质效果不好;若液体量很大,将会导致液泛发生。
最大气体量或最大液体量,可以根据泛点气速来估计;最小气体量和最小液体量必须根据经验来确定。
填料层内的传质速率是一个极为复杂的问题,至今尚未搞清。有效接触面积是真正参与传质的面积。有效接触面积,包括填料的有效润湿表面和可能存在的液滴、气泡表面积,有效接触表面<填料的接触表面<干填料表面。关于填料的润湿表面,恩田等人提出了如下的经验关联式:
同时,他们还提出了一些传质系数的经验关联式:
10.2.4 填料塔的附属结构
⑴ 支撑板:主要是支撑塔内的填料,同时又能保证气液两相的顺利通过。
⑵ 液体分布器:对进入塔内的液体进行分布,使得液体在塔截面上分布均匀。
⑶ 液体再分布器:为改善向壁偏流效应造成的液体分布不均,在填料层内部每隔一定高度设置的装置。
⑷ 除沫器:用来除去由填料层顶部逸出的气体中的液滴,安装在液体分布器上方。
❿ 化工原理课程设计一个老师带多少学生
有规定,副教授级别的不能超过7个,但实际中好像都多带好几个