iir数字滤波器设计课程设计
⑴ 基于matlab数字滤波器的设计
摘要
《数字信号处理》课程是一门理论性和实践性都很强, 它具备高等代数、数值分析、概率统计、随机过程等计算学科的知识; 要求我们学生掌握扎实的基础知识和理论基础。 又是跟其他学科密切相关,即与通信理论、计算机、微电子技术不可分,又是人工智能、模式识别、神经网络等新兴学科的理论基础之一。 本次数字滤波器设计方法是基于MATLAB的数字滤波器的设计。此次设计的主要内容为:IIR数字滤波器和FIR数字滤波器的设计
关键词:IIR、FIR、低通、高通、带阻、带通
Abstract
"Digital Signal Processing" is a theoretical and practical nature are strong, and it has advanced algebra and numerical analysis, probability and statistics, random process such as calculation of discipline knowledge; requires students to acquire basic knowledge and a solid theoretical basis. Is closely related with other subjects, namely, and communication theory, computers, microelectronics can not be separated, but also in artificial intelligence, pattern recognition, neural network theory one of the emerging discipline. The digital filter design method is based on MATLAB for digital filter design. The main elements of design: IIR and FIR digital filter design of digital filter
Key Words: IIR, FIR, low pass, high pass, band stop, band pass
目录
一、 前言 3
二、 课程设计的目的 3
三、 数字信号处理课程设计说明及要求 3
四、 滤波器的设计原理 4
4.1 数字滤波器简介 4
4.2 IIR滤波器的设计原理 4
4.3 FIR滤波器的设计原理 5
4.4 FIR滤波器的窗函数设计法 6
五、 设计内容 6
5.1 设计题目: 6
5.2设计程序代码及结果: 7
六、 结束语 15
七、 参考文献 16
一、 前言
数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。
随着信息时代和数字世界的到来,数字信号处理已成为今一门极其重要的学科和技术领域。数字信号处理在通信语音、图像、自动控制、雷达、军事、航空航天、医疗和家用电器等众多领域得到了广泛的应用。在数字信号处理应用中,数字滤波器十分重要并已获得广泛应用。
二、 课程设计的目的
1)
三、 数字信号处理课程设计说明及要求
所需硬件:PC机
四、 滤波器的设计原理
4.1 数字滤波器简介
数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。
信号 通过线性系统后,其输出 就是输入信号 和系统冲激响应 的卷积。除了 外, 的波形将不同于输入波形 。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非 为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分 较大的模,因此, 中这些频率成分将得到加强,而另外一些频率成分 的模很小甚至为零, 中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。
4.2 IIR滤波器的设计原理
IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。
IIR数字滤波器的设计步骤:
(1) 按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标;
(2) 根据模拟滤波器技术指标设计为响应的模拟低通滤波器;
(3) 很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;
(4) 如果要设计的滤波器是高通、带通或带阻滤波器,则首先把它们的技术指标转化为模拟低通滤波器的技术指标,设计为数字低通滤波器,最后通过频率转换的方法来得到所要的滤波器。
4.3 FIR滤波器的设计原理
FIR滤波器通常采用窗函数方法来设计。窗设计的基本思想是,首先选择一个适当的理想选频滤波器(它总是具有一个非因果,无限持续时间脉冲响应),然后街区(加窗)它的脉冲响应得到线性相位和因果FIR滤波器。我们用Hd(e^jw)表示理想的选频滤波器,它在通带上具有单位增益和线性相位,在阻带上具有零响应。一个带宽wc<pi的低通滤波器由下式给定:
为了从hd(n)得到一个FIR滤波器,必须同时在两边截取hd(n)。而要得到一个因果的线性相位滤波器,它的h(n)长度为N,必须有:
这种操作叫做加窗,h(n)可以看做是hd(n)与窗函数w(n)的乘积:
h(n)=hd(n)w(n)
其中
根据w(n)的不同定义,可以得到不同的窗结构。
在频域中,因果FIR滤波器响应H(e^jw)由Hd(e^jw)和窗响应W(e^jw)的周期卷积得到,即
常用的窗函数有矩形窗、巴特利特(BARTLETT)窗、汉宁(HANNING)窗、海明(HAMMING)窗、布莱克曼(BLACKMAN)窗、凯泽(KAISER)窗等。
4.4 FIR滤波器的窗函数设计法
FIR滤波器的设计方法有许多种,如窗函数设计法、频率采样设计法和最优化设计法等。窗函数设计法的基本原理是用一定宽度窗函数截取无限脉冲响应序列获得有限长的脉冲响应序列,主要设计步骤为:
(1) 通过傅里叶逆变换获得理想滤波器的单位脉冲响应hd(n)。
(2) 由性能指标确定窗函数W(n)和窗口长度N。
(3) 求得实际滤波器的单位脉冲响应h(n), h(n)即为所设计FIR滤波器系数向量b(n)。
五、 设计内容
5.1 设计题目:
1-1.试用MATLAB设计一巴特沃斯低通数字滤波器,要求通带截至频率Wp=30HZ,主带截至频率为Ws=35HZ,通带衰减不大于0.5DB,主带衰减不小于40DB,抽样频Fs=100HZ。
1-2.基于Butterworth模拟滤波器原型,使用双线性状换设计数字滤波器:各参数值为:通带截止频率Omega=0.2*pi,阻带截止频率Omega=0.3*pi,通带波动值Rp=1dB,阻带波动值Rs=15dB,设Fs=20000Hz。
1-3设计一巴特沃斯高通数字滤波器,要求通带截止频率0.6*pi,通带衰减不大于1dB,阻带衰减15DB,抽样T=1。
1-4.设计一巴特沃斯带阻数字滤波器,要求通带上下截至频率为0.8*PI、0.2*PI,通带衰减不大于1DB,阻带上下截至频率0.7*PI、0.4*PI 阻带衰减不小于30DB,
2-1.用窗函数法设计一个线性相位FIR低通滤波器,并满足性能指标:通带边界频率
Wp=0.5*pi,阻带边界频率Ws=0.66*pi,阻带衰减不小于40dB,通带波纹不大于3dB。选择汉宁窗。
2-4.用海明窗设计一个FIR滤波器,其中Wp=0.2*pi,Ws=0.3*pi,通带衰减不大于0.25dB,阻带衰减不小于50dB。
5.2设计程序代码及结果:
1-1一.试用MATLAB设计一巴特沃斯低通数字滤波器,要求通带截至频率Wp=30HZ,阻带截至频率为Ws=35HZ,通带衰减不大于0.5DB,阻带衰减不小于40DB,抽样频Fs=100HZ。
代码为:
fp = 30;
fs = 35;
Fs = 100;
wp = 2*pi*fp/Fs;
ws = 2*pi*fs/Fs;
wp = tan(wp/2);
ws = tan(ws/2); % 通带最大衰减为0.5dB,阻带最小衰减为40dB
[N, wn] = buttord(wp, ws, 0.5, 40, 's'); % 模拟低通滤波器极零点
[z, p, k] = buttap(N); % 由极零点获得转移函数参数
[b, a] = zp2tf(z, p, k); % 由原型滤波器获得实际低通滤波器
[B, A] = lp2lp(b, a, wp);
[bz, az] = bilinear(B, A, .5);
[h, w] = freqz(bz, az, 256, Fs);
figure
plot(w, abs(h))
grid on
图1 巴特沃斯数字低通滤波器
1-2基于Butterworth模拟滤波器原型,使用双线性状换设计数字滤波器:各参数值为:通带截止频率Omega=0.2*pi,阻带截止频率Omega=0.3*pi,通带波动值Rp=1dB,阻带波动值Rs=15dB,设Fs=4000Hz。
代码:
wp=0.2*pi;ws=0.3*pi;
Fs=4000;T=1/Fs;
OmegaP=(2/T)*tan(wp/2);
OmegaS=(2/T)*tan(ws/2);
rp=1;rs=15;as=15;
ripple=10^(-rp/20);attn=10^(-rs/20);
[n,wn]=buttord(OmegaP,OmegaS,rp,rs,'s');
[z,p,k]=Buttap(n);
[b,a]=zp2tf(z,p,k);
[bt,at]=lp2lp(b,a,wn);
[b,a]=bilinear(bt,at,Fs);
[db,mag,pha,grd,w]=freqz_m(b,a);
%
%下面绘出各条曲线
subplot(2,2,1);plot(w/pi,mag);title('Magnitude Frequency幅频特性');
xlabel('w(/pi)');ylabel('|H(jw)|');
axis([0,1,0,1.1]);
set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);
set(gca,'YTickMode','manual','YTick',[0 attn ripple 1]);grid
subplot(2,2,2);plot(w/pi,db);title('Magnitude Frequency幅频特性(db)');
xlabel('w(/pi)');ylabel('dB');
axis([0,1,-30,5]);
set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);
set(gca,'YTickMode','manual','YTick',[-60 -as -rp 0]);grid
subplot(2,2,3);plot(w/pi,pha/pi);title('Phase Frequency相频特性');
xlabel('w(/pi)');ylabel('pha(/pi)');
axis([0,1,-1,1]);
subplot(2,2,4);plot(w/pi,grd);title('Group Delay群延时');
xlabel('w(/pi)');ylabel('Sample');
axis([0,1,0,15]);
set(gca,'XTickMode','manual','XTick',[0 0.2 0.3 1]);grid
运行结果:
图2巴特沃思数字低通滤波器幅频-相频特性
1-3设计一巴特沃斯高通数字滤波器,要求通带截止频率0.6*pi,通带衰减不大于1dB,阻带衰减15DB,抽样T=1。
Wp=0.6*pi;
Ws=0.4*pi;
Ap=1;
As=15;
[N,wn]=buttord(Wp/pi,Ws/pi,Ap,As); %计算巴特沃斯滤波器阶次和截止频率
%频率变换法设计巴特沃斯高通滤波器
[db,mag,pha,grd,w]=freqz_m(b,a); %数字滤波器响应
plot(w,mag);
title('数字滤波器幅频响应|H(ej\Omega)|')
图3巴特沃斯数字高通滤波器
2-1用窗函数法设计一个线性相位FIR低通滤波器,并满足性能指标:通带边界频率
Wp=0.5*pi,阻带边界频率Ws=0.66*pi,阻带衰减不小于40dB,通带波纹不大于3dB。选择汉宁窗。
代码:
wp =0.5*pi;
ws=0.66*pi;
wdelta =ws-wp;
N= ceil(8*pi/wdelta)
if rem(N,2)==0
N=N+1;
end
);
运行结果:
给分就给你个全的!
图6低通FIR滤波器
六、 结束语
本次数字滤波器设计方法是基于MATLAB的数字滤波器的设计,是用学过的数字信号理论为依据,用MATLAB代码来实现。课程设计过程中,通过IIR数字滤波器和FIR数字滤波器的设计实例,说明如何利用MATLAB来完成数字滤波器的设计。窗函数法中相位响应有严格的线性,不存在稳定性问题, 设计简单。双线性变换不会出现由于高频部分超过折叠频率而混淆到低频部分去的现象,但会产生频率混碟现象,使数字滤波器的频响偏移模拟滤波器的频响。由滤波器的频谱图和滤波前后的语音信号的频谱图对比可知本设计选用双线性变换法设计的IIR滤波器比较好。在同样的技术指标的要求下,IIR滤波器所要求的阶数N也比较小,实现起来比较容易。
通过综合运用数字信号处理的理论知识进行滤波器设计,通过理论推导得出相应结论,再利用 MATLAB 作为编程工具进行计算机实现,从而加深了对所学知识的理解,建立概念。对以前在课本上所学的东西有了更深入的理解和掌握。最后,无论做什么课程设计,都需要要有一定的理论知识作为基础,同时通过这次课程设计,我对于以前所学的数字信号处理知识有了更深的理解。
七、 参考文献
1. 程佩青《数字信号处理教程》北京清华大学出版社2007年2月.
2. 赵知劲、刘顺兰《数字信号处理实验》.浙江大学出版社.
3. S.K.Mitra.Digital Signal Processing:A Computer-Based Approach.
NewYork,NewYork:McGraw-Hill,thirded,2006.
4. 肖伟、刘忠等《 MATLAB程序设计与应用》清华大学出版社、北京交通大学出版社.
5. 胡良剑、孙晓君 《 MATLAB数学实验》.高等教育出版社.
⑵ AVR单片机课程设计(ATmega16芯片):如何用ICCAVR设计 IIR数字低通滤波器
AVR单片机C语言开发入门指导(强烈推荐),内容涉及各种avr的编译器,一本书就可以学会ICC,CVA,IAR,GCC,等avr的编专译器了,并且全面讲属解了c语言的单片机编程知识。
AVR单片机嵌入式系统原理与应用实践(马朝老师写的很好的教材,内容实用广泛,会很好培养你的软硬件设计能力),这本书是以cva编译器为背景编写的,并且配套的光盘收录了所有书中的程序,还有大量技术资料。
还有很多,本人觉得你把这两本书吃透,就可以横扫avr单片机阵营了。
关于编译器的选择,我认为ICC的很好,实用方便,建议你下载ICC 7.22版的。
不要在选择编译器上犹豫不决,也不要学一种还不精通又去学别的编译器,他们编程方法都类似,本人从零学ICC,到设计出3000行代码的程序,并且稳定运行,用了3个月的时间。执着和刻苦钻研是不可少的。
要把学单片机作为设计项目的一部分来做,边学边用,我有电子版的图书,需要请加47074468,无偿提供。
⑶ 利用MATLAB做切比雪夫带阻IIR滤波器设计报告
一、数字滤波器数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为是一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性: ,其中 、 分别是数字滤波器的输出序列和输入序列的频域特性(或称为频谱特性), 是数字滤波器的单位取样响应的频谱,又称为数字滤波器的频域响应。输入序列的频谱 经过滤波后 ,因此,只要按照输入信号频谱的特点和处理信号的目的, 适当选择 ,使得滤波后的 满足设计的要求,这就是数字滤波器的滤波原理。数字滤波器根据其冲激响应函数的时域特性,可分为两种,即无限长冲激响应(IIR)数字滤波器和有限长冲激响应(FIR)数字滤波器。IIR 数字滤波器的特征是,具有无限持续时间冲激响应,需要用递归模型来实现,其差分方程为: 系统函数为: 设计IIR滤波器的任务就是寻求一个物理上可实现的系统函数H(z),使其频率响应H(z)满足所希望得到的频域指标,即符合给定的通带截止频率、阻带截止频率、通带衰减系数和阻带衰减系数。二、IIR数字滤波器设计方法IIR数字滤波器是一种离散时间系统,其系统函数为假设M≤N,当M>N时,系统函数可以看作一个IIR的子系统和一个(M-N)的FIR子系统的级联。IIR数字滤波器的设计实际上是求解滤波器的系数 和 ,它是数学上的一种逼近问题,即在规定意义上(通常采用最小均方误差准则)去逼近系统的特性。如果在S平面上去逼近,就得到模拟滤波器;如果在z平面上去逼近,就得到数字滤波器。1.用脉冲相应不变法设计IIR数字滤波器 利用模拟滤波器来设计数字滤波器,也就是使数字滤波器能模仿模拟滤波器的特性,这种模仿可以从不同的角度出发。脉冲响应不变法是从滤波器的脉冲响应出发,使数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应ha(t),即将ha(t)进行等间隔采样,使h(n)正好等于ha(t)的采样值,满足h(n)=ha(nT)式中,T是采样周期。如果令Ha(s)是ha(t)的拉普拉斯变换,H(z)为h(n)的Z变换,利用采样序列的Z变换与模拟信号的拉普拉斯变换的关系得
(1-1)则可看出,脉冲响应不变法将模拟滤波器的S平面变换成数字滤波器的Z平面,这个从s到z的变换z=esT是从S平面变换到Z平面的标准变换关系式。
图1-1脉冲响应不变法的映射关系 由(1-1)式,数字滤波器的频率响应和模拟滤波器的频率响应间的关系为(1-2) 这就是说,数字滤波器的频率响应是模拟滤波器频率响应的周期延拓。正如采样定理所讨论的,只有当模拟滤波器的频率响应是限带的,且带限于折叠频率以内时,即
⑷ IIR数字滤波器设计及软件实现
你这个是课程设计要求
还是毕业设计
要求
你的要谈清晰
这样我才好帮到你的
⑸ 基于双线性变换法的IIR数字巴特沃思带通滤波器设计
作业自己做吧,给你个低通的参考下
设计原理:巴特沃斯模拟低通滤波器的特性完内全由3dB截止频率Wc和阶数N两个参数决定容,参数Wc和N由所给的通带截止频率Wp,阻带截止频率Ws,通带最大衰减Rp,阻带最小衰减Rs决定,巴特沃斯模拟低通滤波器系统函数经计算可得。
Matlab源程序:
Wp=4;Ws=6;Rp=10;Rs=30;
[N,Wc]=buttord(Wp,Ws,Rp,Rs,'s');
[B,A]=butter(N,Wc,'s');
W=0:0.0005:10;
[H,W]=freqs(B,A,W);
H=20*log10(abs(H));
plot(W,H);grid ;
title('IIR滤波器幅度响应')
xlabel;ylabel;
⑹ 基于IIR的语音信号滤波——[DSP课程设计]
这个课程我喜欢啊