棒料输送线布料装置课程设计
『壹』 一级减速器课程设计
一级直齿轮减速器说明书和装配
技术数据
滚筒圆周力:F=1200N
带速:V=2.1M/S
滚筒直径:D=400mm
全题目:一级圆柱直齿轮减速器
参考书目:《机械设计基础》任成高
《简明机械零件设计实用手册》 胡家秀
其他也可发给我参考啊
万分感谢!!!也把它发到我的邮箱里面看看吧。。[email protected]
不过你也可以到我的博客里面看看哦。 http://edzyxwb.blogcn.com/ 机械设计课程--带式运输机传动装置中的同轴式1级圆柱齿轮减速器 目 录
设计任务书……………………………………………………1
传动方案的拟定及说明………………………………………4
电动机的选择…………………………………………………4
计算传动装置的运动和动力参数……………………………5
传动件的设计计算……………………………………………5
轴的设计计算…………………………………………………8
滚动轴承的选择及计算………………………………………14
键联接的选择及校核计算……………………………………16
连轴器的选择…………………………………………………16
减速器附件的选择……………………………………………17
润滑与密封……………………………………………………18
设计小结………………………………………………………18
参考资料目录…………………………………………………18
机械设计课程设计任务书
题目:设计一用于带式运输机传动装置中的同轴式二级圆柱齿轮减速器
一. 总体布置简图
1—电动机;2—联轴器;3—齿轮减速器;4—带式运输机;5—鼓轮;6—联轴器
二. 工作情况:
载荷平稳、单向旋转
三. 原始数据
鼓轮的扭矩T(N•m):850
鼓轮的直径D(mm):350
运输带速度V(m/s):0.7
带速允许偏差(%):5
使用年限(年):5
工作制度(班/日):2
四. 设计内容
1. 电动机的选择与运动参数计算;
2. 斜齿轮传动设计计算
3. 轴的设计
4. 滚动轴承的选择
5. 键和连轴器的选择与校核;
6. 装配图、零件图的绘制
7. 设计计算说明书的编写
五. 设计任务
1. 减速器总装配图一张
2. 齿轮、轴零件图各一张
3. 设计说明书一份
六. 设计进度
1、 第一阶段:总体计算和传动件参数计算
2、 第二阶段:轴与轴系零件的设计
3、 第三阶段:轴、轴承、联轴器、键的校核及草图绘制
4、 第四阶段:装配图、零件图的绘制及计算说明书的编写
传动方案的拟定及说明
由题目所知传动机构类型为:同轴式二级圆柱齿轮减速器。故只要对本传动机构进行分析论证。
本传动机构的特点是:减速器横向尺寸较小,两大吃论浸油深度可以大致相同。结构较复杂,轴向尺寸大,中间轴较长、刚度差,中间轴承润滑较困难。
电动机的选择
1.电动机类型和结构的选择
因为本传动的工作状况是:载荷平稳、单向旋转。所以选用常用的封闭式Y(IP44)系列的电动机。
2.电动机容量的选择
1) 工作机所需功率Pw
Pw=3.4kW
2) 电动机的输出功率
Pd=Pw/η
η= =0.904
Pd=3.76kW
3.电动机转速的选择
nd=(i1’•i2’…in’)nw
初选为同步转速为1000r/min的电动机
4.电动机型号的确定
由表20-1查出电动机型号为Y132M1-6,其额定功率为4kW,满载转速960r/min。基本符合题目所需的要求
计算传动装置的运动和动力参数
传动装置的总传动比及其分配
1.计算总传动比
由电动机的满载转速nm和工作机主动轴转速nw可确定传动装置应有的总传动比为:
i=nm/nw
nw=38.4
i=25.14
2.合理分配各级传动比
由于减速箱是同轴式布置,所以i1=i2。
因为i=25.14,取i=25,i1=i2=5
速度偏差为0.5%<5%,所以可行。
各轴转速、输入功率、输入转矩
项 目 电动机轴 高速轴I 中间轴II 低速轴III 鼓 轮
转速(r/min) 960 960 192 38.4 38.4
功率(kW) 4 3.96 3.84 3.72 3.57
转矩(N•m) 39.8 39.4 191 925.2 888.4
传动比 1 1 5 5 1
效率 1 0.99 0.97 0.97 0.97
传动件设计计算
1. 选精度等级、材料及齿数
1) 材料及热处理;
选择小齿轮材料为40Cr(调质),硬度为280HBS,大齿轮材料为45钢(调质),硬度为240HBS,二者材料硬度差为40HBS。
2) 精度等级选用7级精度;
3) 试选小齿轮齿数z1=20,大齿轮齿数z2=100的;
4) 选取螺旋角。初选螺旋角β=14°
2.按齿面接触强度设计
因为低速级的载荷大于高速级的载荷,所以通过低速级的数据进行计算
按式(10—21)试算,即
dt≥
1) 确定公式内的各计算数值
(1) 试选Kt=1.6
(2) 由图10-30选取区域系数ZH=2.433
(3) 由表10-7选取尺宽系数φd=1
(4) 由图10-26查得εα1=0.75,εα2=0.87,则εα=εα1+εα2=1.62
(5) 由表10-6查得材料的弹性影响系数ZE=189.8Mpa
(6) 由图10-21d按齿面硬度查得小齿轮的接触疲劳强度极限σHlim1=600MPa;大齿轮的解除疲劳强度极限σHlim2=550MPa;
(7) 由式10-13计算应力循环次数
N1=60n1jLh=60×192×1×(2×8×300×5)=3.32×10e8
N2=N1/5=6.64×107
(8) 由图10-19查得接触疲劳寿命系数KHN1=0.95;KHN2=0.98
(9) 计算接触疲劳许用应力
取失效概率为1%,安全系数S=1,由式(10-12)得
[σH]1==0.95×600MPa=570MPa
[σH]2==0.98×550MPa=539MPa
[σH]=[σH]1+[σH]2/2=554.5MPa
2) 计算
(1) 试算小齿轮分度圆直径d1t
d1t≥ = =67.85
(2) 计算圆周速度
v= = =0.68m/s
(3) 计算齿宽b及模数mnt
b=φdd1t=1×67.85mm=67.85mm
mnt= = =3.39
h=2.25mnt=2.25×3.39mm=7.63mm
b/h=67.85/7.63=8.89
(4) 计算纵向重合度εβ
εβ= =0.318×1×tan14 =1.59
(5) 计算载荷系数K
已知载荷平稳,所以取KA=1
根据v=0.68m/s,7级精度,由图10—8查得动载系数KV=1.11;由表10—4查的KHβ的计算公式和直齿轮的相同,
故 KHβ=1.12+0.18(1+0.6×1 )1×1 +0.23×10 67.85=1.42
由表10—13查得KFβ=1.36
由表10—3查得KHα=KHα=1.4。故载荷系数
K=KAKVKHαKHβ=1×1.03×1.4×1.42=2.05
(6) 按实际的载荷系数校正所得的分度圆直径,由式(10—10a)得
d1= = mm=73.6mm
(7) 计算模数mn
mn = mm=3.74
3.按齿根弯曲强度设计
由式(10—17 mn≥
1) 确定计算参数
(1) 计算载荷系数
K=KAKVKFαKFβ=1×1.03×1.4×1.36=1.96
(2) 根据纵向重合度εβ=0.318φdz1tanβ=1.59,从图10-28查得螺旋角影响系数 Yβ=0。88
(3) 计算当量齿数
z1=z1/cos β=20/cos 14 =21.89
z2=z2/cos β=100/cos 14 =109.47
(4) 查取齿型系数
由表10-5查得YFa1=2.724;Yfa2=2.172
(5) 查取应力校正系数
由表10-5查得Ysa1=1.569;Ysa2=1.798
(6) 计算[σF]
σF1=500Mpa
σF2=380MPa
KFN1=0.95
KFN2=0.98
[σF1]=339.29Mpa
[σF2]=266MPa
(7) 计算大、小齿轮的 并加以比较
= =0.0126
= =0.01468
大齿轮的数值大。
2) 设计计算
mn≥ =2.4
mn=2.5
4.几何尺寸计算
1) 计算中心距
z1 =32.9,取z1=33
z2=165
a =255.07mm
a圆整后取255mm
2) 按圆整后的中心距修正螺旋角
β=arcos =13 55’50”
3) 计算大、小齿轮的分度圆直径
d1 =85.00mm
d2 =425mm
4) 计算齿轮宽度
b=φdd1
b=85mm
B1=90mm,B2=85mm
5) 结构设计
以大齿轮为例。因齿轮齿顶圆直径大于160mm,而又小于500mm,故以选用腹板式为宜。其他有关尺寸参看大齿轮零件图。
轴的设计计算
拟定输入轴齿轮为右旋
II轴:
1.初步确定轴的最小直径
d≥ = =34.2mm
2.求作用在齿轮上的受力
Ft1= =899N
Fr1=Ft =337N
Fa1=Fttanβ=223N;
Ft2=4494N
Fr2=1685N
Fa2=1115N
3.轴的结构设计
1) 拟定轴上零件的装配方案
i. I-II段轴用于安装轴承30307,故取直径为35mm。
ii. II-III段轴肩用于固定轴承,查手册得到直径为44mm。
iii. III-IV段为小齿轮,外径90mm。
iv. IV-V段分隔两齿轮,直径为55mm。
v. V-VI段安装大齿轮,直径为40mm。
vi. VI-VIII段安装套筒和轴承,直径为35mm。
2) 根据轴向定位的要求确定轴的各段直径和长度
1. I-II段轴承宽度为22.75mm,所以长度为22.75mm。
2. II-III段轴肩考虑到齿轮和箱体的间隙12mm,轴承和箱体的间隙4mm,所以长度为16mm。
3. III-IV段为小齿轮,长度就等于小齿轮宽度90mm。
4. IV-V段用于隔开两个齿轮,长度为120mm。
5. V-VI段用于安装大齿轮,长度略小于齿轮的宽度,为83mm。
6. VI-VIII长度为44mm。
4. 求轴上的载荷
66 207.5 63.5
Fr1=1418.5N
Fr2=603.5N
查得轴承30307的Y值为1.6
Fd1=443N
Fd2=189N
因为两个齿轮旋向都是左旋。
故:Fa1=638N
Fa2=189N
5.精确校核轴的疲劳强度
1) 判断危险截面
由于截面IV处受的载荷较大,直径较小,所以判断为危险截面
2) 截面IV右侧的
截面上的转切应力为
由于轴选用40cr,调质处理,所以
([2]P355表15-1)
a) 综合系数的计算
由 , 经直线插入,知道因轴肩而形成的理论应力集中为 , ,
([2]P38附表3-2经直线插入)
轴的材料敏感系数为 , ,
([2]P37附图3-1)
故有效应力集中系数为
查得尺寸系数为 ,扭转尺寸系数为 ,
([2]P37附图3-2)([2]P39附图3-3)
轴采用磨削加工,表面质量系数为 ,
([2]P40附图3-4)
轴表面未经强化处理,即 ,则综合系数值为
b) 碳钢系数的确定
碳钢的特性系数取为 ,
c) 安全系数的计算
轴的疲劳安全系数为
故轴的选用安全。
I轴:
1.作用在齿轮上的力
FH1=FH2=337/2=168.5
Fv1=Fv2=889/2=444.5
2.初步确定轴的最小直径
3.轴的结构设计
1) 确定轴上零件的装配方案
2)根据轴向定位的要求确定轴的各段直径和长度
d) 由于联轴器一端连接电动机,另一端连接输入轴,所以该段直径尺寸受到电动机外伸轴直径尺寸的限制,选为25mm。
e) 考虑到联轴器的轴向定位可靠,定位轴肩高度应达2.5mm,所以该段直径选为30。
f) 该段轴要安装轴承,考虑到轴肩要有2mm的圆角,则轴承选用30207型,即该段直径定为35mm。
g) 该段轴要安装齿轮,考虑到轴肩要有2mm的圆角,经标准化,定为40mm。
h) 为了齿轮轴向定位可靠,定位轴肩高度应达5mm,所以该段直径选为46mm。
i) 轴肩固定轴承,直径为42mm。
j) 该段轴要安装轴承,直径定为35mm。
2) 各段长度的确定
各段长度的确定从左到右分述如下:
a) 该段轴安装轴承和挡油盘,轴承宽18.25mm,该段长度定为18.25mm。
b) 该段为轴环,宽度不小于7mm,定为11mm。
c) 该段安装齿轮,要求长度要比轮毂短2mm,齿轮宽为90mm,定为88mm。
d) 该段综合考虑齿轮与箱体内壁的距离取13.5mm、轴承与箱体内壁距离取4mm(采用油润滑),轴承宽18.25mm,定为41.25mm。
e) 该段综合考虑箱体突缘厚度、调整垫片厚度、端盖厚度及联轴器安装尺寸,定为57mm。
f) 该段由联轴器孔长决定为42mm
4.按弯扭合成应力校核轴的强度
W=62748N.mm
T=39400N.mm
45钢的强度极限为 ,又由于轴受的载荷为脉动的,所以 。
III轴
1.作用在齿轮上的力
FH1=FH2=4494/2=2247N
Fv1=Fv2=1685/2=842.5N
2.初步确定轴的最小直径
3.轴的结构设计
1) 轴上零件的装配方案
2) 据轴向定位的要求确定轴的各段直径和长度
I-II II-IV IV-V V-VI VI-VII VII-VIII
直径 60 70 75 87 79 70
长度 105 113.75 83 9 9.5 33.25
5.求轴上的载荷
Mm=316767N.mm
T=925200N.mm
6. 弯扭校合
滚动轴承的选择及计算
I轴:
1.求两轴承受到的径向载荷
5、 轴承30206的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
II轴:
6、 轴承30307的校核
1) 径向力
2) 派生力
,
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
III轴:
7、 轴承32214的校核
1) 径向力
2) 派生力
3) 轴向力
由于 ,
所以轴向力为 ,
4) 当量载荷
由于 , ,
所以 , , , 。
由于为一般载荷,所以载荷系数为 ,故当量载荷为
5) 轴承寿命的校核
键连接的选择及校核计算
代号 直径
(mm) 工作长度
(mm) 工作高度
(mm) 转矩
(N•m) 极限应力
(MPa)
高速轴 8×7×60(单头) 25 35 3.5 39.8 26.0
12×8×80(单头) 40 68 4 39.8 7.32
中间轴 12×8×70(单头) 40 58 4 191 41.2
低速轴 20×12×80(单头) 75 60 6 925.2 68.5
18×11×110(单头) 60 107 5.5 925.2 52.4
由于键采用静联接,冲击轻微,所以许用挤压应力为 ,所以上述键皆安全。
连轴器的选择
由于弹性联轴器的诸多优点,所以考虑选用它。
二、高速轴用联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以考虑选用弹性柱销联轴器TL4(GB4323-84),但由于联轴器一端与电动机相连,其孔径受电动机外伸轴径限制,所以选用TL5(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径 ,
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
三、第二个联轴器的设计计算
由于装置用于运输机,原动机为电动机,所以工作情况系数为 ,
计算转矩为
所以选用弹性柱销联轴器TL10(GB4323-84)
其主要参数如下:
材料HT200
公称转矩
轴孔直径
轴孔长 ,
装配尺寸
半联轴器厚
([1]P163表17-3)(GB4323-84
减速器附件的选择
通气器
由于在室内使用,选通气器(一次过滤),采用M18×1.5
油面指示器
选用游标尺M16
起吊装置
采用箱盖吊耳、箱座吊耳
放油螺塞
选用外六角油塞及垫片M16×1.5
润滑与密封
一、齿轮的润滑
采用浸油润滑,由于低速级周向速度为,所以浸油高度约为六分之一大齿轮半径,取为35mm。
二、滚动轴承的润滑
由于轴承周向速度为,所以宜开设油沟、飞溅润滑。
三、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备,选用L-AN15润滑油。
四、密封方法的选取
选用凸缘式端盖易于调整,采用闷盖安装骨架式旋转轴唇型密封圈实现密封。
密封圈型号按所装配轴的直径确定为(F)B25-42-7-ACM,(F)B70-90-10-ACM。
轴承盖结构尺寸按用其定位的轴承的外径决定。
设计小结
由于时间紧迫,所以这次的设计存在许多缺点,比如说箱体结构庞大,重量也很大。齿轮的计算不够精确等等缺陷,我相信,通过这次的实践,能使我在以后的设计中避免很多不必要的工作,有能力设计出结构更紧凑,传动更稳定精确的设备。
『贰』 毛坯为直径30mm长为90mm的棒料,材料为45钢数控车手工编程课程设计。
首先要确定难度系数。
学生们已经学了哪些内容。
直线、锥度、圆弧、槽、内孔、普通螺纹、梯形螺纹,二次曲线,确认哪些能考,哪些不能考。
然后考虑尺寸精度和形位公差要求,以及表面粗糙度等。
再考虑加工过程中的装夹位置。
还要考虑考试时长,能不能做完。
以上问题全面考虑后,就可以开始画图了。
如果不愿意画图,就在网络搜索“数控车 实操试题”。
如果我的回答对您有帮助,请及时采纳为最佳答案,谢谢!
『叁』 哪位高手帮帮忙!机械类的课程设计急急急急急急急!!!
哥们是哪个学校的,东秦的吧
『肆』 棒料自动供料装置
这叫瑞达中来央供料系统,中央源供料系统设计理念是结构紧凑,运行可依靠,品质优异,维护简便,节约能源。基于这一理念设计的中央处理系统主要由中央干燥,中央输送,集中储存等系统组成。中央干燥系统采用蜂巢轮式除湿干燥机或无热式除湿干燥机,为原料的可靠干燥提供了持续稳定的低露点干燥风,干燥管理系统等多项技术以及最新的PLC 微电脑数位化控制器,PID 温控系统。能量的利用效率是瑞达的中央干燥系统设计中首要考虑的问题,闭合的循环回路不但可以节省能源,而且在再生过程中高温闭回路,确保输送塑料干燥恒温。1.2 级冷却器,迅速降温,提高除湿轮吸湿功能,并使能量得到了最大程度的利用,内部结构不锈钢一体成型、管损小、加热均匀、除湿轮可水洗、使用寿命长。对某些原料来说,在高温下干燥太长时间会引起原料的热降解, 瑞达特有的PLC人机介面,人性化智能干燥管理系统是通过监测原料的用量自动调节干燥温度,在原料用量较低的情况下自动降低干燥温度以防止损害原料,这不仅节省了大量的热能,而且保证了生产的连续性,如果在原料用量增长很快的情况下,系统就会报警,警告原料没有得到有效的干燥。
『伍』 机械设计课程设计 设计链式输送机传动装置中的一级圆柱齿轮减速器
1.齿数比,2.齿数,3.齿宽,4.材料选择、受力分析,以确定分度圆直径。5.模数计算,6.顶中心距,7.验算强度,8.验算线速度。
不难,很繁,大概除我,没人愿意给你算。
『陆』 机械设计课程设计任务书
目 录
设计计划任务书 ﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎1
传动方案说明﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎2
电动机的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎3
传动装置的运动和动力参数﹎﹎﹎﹎﹎﹎﹎﹎5
传动件的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎6
轴的设计计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎8
联轴器的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎10
滚动轴承的选择及计算﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎13
键联接的选择及校核计算﹎﹎﹎﹎﹎﹎﹎﹎﹎14
减速器附件的选择﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎15
润滑与密封﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
设计小结﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎16
参考资料﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎﹎17
1.拟定传动方案
为了估计传动装置的总传动比范围,以便选择合适的传动机构和传动方案,可先由已知条件计算其驱动卷筒的转速nw,即
v=1.1m/s;D=350mm;
nw=60*1000*v/(∏*D)=60*1000*1.1/(3.14*350)
一般常选用同步转速为1000r/min或1500r/min的电动机作为原动机,因此传动装置总传动比约为17或25。
2.选择电动机
1)电动机类型和结构形式
按工作要求和工作条件,选用一般用途的Y(IP44)系列三相异步电动机。它为卧式封闭结构。
2)电动机容量
(1)卷筒轴的输出功率Pw
F=2800r/min;
Pw=F*v/1000=2800*1.1/1000
(2)电动机输出功率Pd
Pd=Pw/t
传动装置的总效率 t=t1*t2^2*t3*t4*t5
式中,t1,t2,…为从电动机到卷筒之间的各传动机构和轴承的效率。由表2-4查得:
弹性联轴器 1个
t4=0.99;
滚动轴承 2对
t2=0.99;
圆柱齿轮闭式 1对
t3=0.97;
V带开式传动 1幅
t1=0.95;
卷筒轴滑动轴承润滑良好 1对
t5=0.98;
则
t=t1*t2^2*t3*t4*t5=0.95*0.99^2*0.97*0.99*0.98=0.8762
故
Pd=Pw/t=3.08/0.8762
(3)电动机额定功率Ped
由第二十章表20-1选取电动机额定功率ped=4KW。
3)电动机的转速
为了便于选择电动事,先推算电动机转速的可选范围。由表2-1查得V带传动常用传动比范围2~4,单级圆柱齿轮传动比范围3~6,
可选电动机的最小转速
Nmin=nw*6=60.0241*6=360.1449r/min
可选电动机的最大转速
Nmin=nw*24=60.0241*24=1440.6 r/min
同步转速为960r/min
选定电动机型号为Y132M1-6。
4)电动机的技术数据和外形、安装尺寸
由表20-1、表20-2查出Y132M1-6型电动机的方根技术数据和
外形、安装尺寸,并列表刻录备用。
电机型号 额定功率 同步转速 满载转速 电机质量 轴径mm
Y132M1-6 4Kw 1000 960 73 28
大齿轮数比小齿轮数=101/19=5.3158
3.计算传动装置总传动比和分配各级传动比
1)传动装置总传动比
nm=960r/min;
i=nm/nw=960/60.0241=15.9936
2)分配各级传动比
取V带传动比为
i1=3;
则单级圆柱齿轮减速器比为
i2=i/i1=15.9936/3=5.3312
所得i2值符合一般圆柱齿轮和单级圆柱齿轮减速器传动比的常用范围。
4.计算传动装置的运动和动力参数
1)各轴转速
电动机轴为0轴,减速器高速轴为Ⅰ轴,低速轴为Ⅱ轴,各轴转速为
n0=nm;
n1=n0/i1=60.0241/3=320r/min
n2=n1/i2=320/5.3312=60.0241r/min
2)各轴输入功率
按机器的输出功率Pd计算各轴输入功率,即
P0=Ped=4kw
轴I 的功率
P1=P0*t1=4*0.95=3.8kw
轴II功率
P2=P1*t2*t3=3.8*0.99*0.97=3.6491kw
3)各轴转矩
T0=9550*P0/n0=9550*4/960=39.7917 Nm
T1=9550*P1/n1=9550*3.8/320=113.4063 Nm
T2=9550*P2/n2=9550*3.6491/60.0241=580.5878 Nm
二、设计带轮
1、计算功率
P=Ped=4Kw
一班制,工作8小时,载荷平稳,原动机为笼型交流电动机
查课本表8-10,得KA=1.1;
计算功率
Pc=KA*P=1.1*4=4.4kw
2选择普通V带型号
n0 =960r/min
根据Pc=4.4Kw,n0=960r/min,由图13-15(205页)查得坐标点位于A型
d1=80~100
3、确定带轮基准直径
表8-11及推荐标准值
小轮直径
d1=100mm;
大轮直径
d2=d1*3.5=100*3.5=350mm
取标准件
d2=355mm;
4、验算带速
验算带速
v=∏*d1*n0/60000=3.14*100*960/60000=5.0265m/s
在5~25m/s范围内
从动轮转速
n22=n0*d1/d2=960*100/355=270.4225m/s
n21=n0/3.5=960/3.5=274.2857m/s
从动轮转速误差=(n22-n21)/n21=270.4225-274.2857/274.2857
=-0.0141
5、V带基准长度和中心距
初定中心距
中心距的范围
amin=0.75*(d1+d2)=0.75*(100+355)=341.2500mm
amax=0.8*(d1+d2)=0.8*(100+355)=364mm
a0=350mm;
初算带长
Lc=2*a0+pi*(d1+d2)/2+(d2-d1)^2/4/a0
Lc = 1461.2mm
选定基准长度
表8-7,表8-8查得
Ld=1600mm;
定中心距
a0+(Ld-Lc)/2=(1600-1461.3)/2=419.4206mm
a=420mm;
amin=a-0.015*Ld=420-0.015*1600=396mm
amax=a+0.03*Ld=420+0.03*1600=468mm
6、验算小带轮包角
验算包角
=180-(d2-d1)*57.3/a=180-(355-100)*57.3/a
145.2107 >120度 故合格
7、求V带根数Z
由式(13-15)得
查得 n1=960r/min , d1=120mm
查表13-3 P0=0.95
由式13-9得传动比
i=d2/(d1(1+0.0141)=350/(100*(1+0.0141)=3.5
查表(13-4)得
由包角145.21度
查表13-5得Ka=0.92
KL=0.99
z=4.4/((0.95+0.05)*0.92*0.99)=3
8、作用在带上的压力F
查表13-1得q=0.10
故由13-17得单根V带初拉力
三、轴
初做轴直径:
轴I和轴II选用45#钢 c=110
d1=110*(3.8/320)^(1/3)=25.096mm
取d1=28mm
d2=110*(3.65/60)^(1/3)=43.262mm
由于d2与联轴器联接,且联轴器为标准件,由轴II扭矩,查162页表
取YL10YLd10联轴器
Tn=630>580.5878Nm 轴II直径与联轴器内孔一致
取d2=45mm
四、齿轮
1、齿轮强度
由n2=320r/min,P=3.8Kw,i=3
采用软齿面,小齿轮40MnB调质,齿面硬度为260HBS,大齿轮用ZG35SiMn调质齿面硬度为225HBS。
因 ,
SH1=1.1, SH2=1.1
,
,
因: , ,SF=1.3
所以
2、按齿面接触强度设计
设齿轮按9级精度制造。取载荷系数K=1.5,齿宽系数
小齿轮上的转矩
按 计算中心距
u=i=5.333
mm
齿数z1=19,则z2=z1*5.333=101
模数m=2a/(z1+z2)=2.0667 取模数m=2.5
确定中心矩a=m(z1+z1)/2=150mm
齿宽b=
b1=70mm,b2=60mm
3、验算弯曲强度
齿形系数YF1=2.57,YF2=2.18
按式(11-8)轮齿弯曲强度
4、齿轮圆周速度
按162页表11-2应选9做精度。与初选一致。
五、轴校核:
圆周力Ft=2T/d1
径向力Fr=Ft*tan =20度 标准压力角
d=mz=2.5*101=252.5mm
Ft=2T/d1=2*104.79/252.5=5852.5N
Fr=5852.5*tan20=2031.9N
1、求垂直面的支承压力Fr1,Fr2
由Fr2*L-Fr*L/2=0
得Fr2=Fr/2=1015.9N
2、求水平平面的支承力
FH1=FH2=Ft/2=2791.2N
3、画垂直面弯矩图
L=40/2+40/2+90+10=140mm
Mav=Fr2*L/2=1015.9*140/2=71.113Nm
4、画水平面弯矩图
MaH=FH*L/2=2791.2*140/2=195.384Nm
5、求合成弯矩图
6、求轴传递转矩
T=Ft*d2/2=2791.2*2.5*101/2=352.389Nm
7、求危险截面的当量弯矩
从图可见a-a截面是最危险截面,其当量弯矩为
轴的扭切应力是脉动循环应力
取折合系数a=0.6代入上式可得
8、计算危险截面处轴的直径
轴的材料,用45#钢,调质处理,由表14-1查得
由表13-3查得许用弯曲应力 ,
所以
考虑到键槽对轴的削弱,将轴的最小危险直径d加4%。
故d=1.04*25.4=26.42mm
由实际最小直径d=40mm,大于危险直径
所以此轴选d=40mm,安全
六、轴承的选择
由于无轴向载荷,所以应选深沟球轴承6000系列
径向载荷Fr=2031.9N,两个轴承支撑,Fr1=2031.9/2=1015.9N
工作时间Lh=3*365*8=8760(小时)
因为大修期三年,可更换一次轴承
所以取三年
由公式
式中 fp=1.1,P=Fr1=1015.9N,ft=1 (工作环境温度不高)
(深沟球轴承系列)
由附表选6207型轴承
七、键的选择
选普通平键A型
由表10-9按最小直径计算,最薄的齿轮计算
b=14mm,h=9mm,L=80mm,d=40mm
由公式
所以
选变通平键,铸铁键
所以齿轮与轴的联接中可采用此平键。
八、减速器附件的选择
1、通气器:
由于在外界使用,有粉尘,选用通气室采用M18 1.5
2、油面指示器:
选用油标尺,规格M16
3、起吊装置:采用箱盖吊耳,箱座吊耳
4、放油螺塞:选用外六角细牙螺塞及垫片M16 1.5
5、窥视孔及视孔盖
选用板结构的视孔盖
九、润滑与密封:
1、齿轮的润滑:采用浸油润滑,由于低速级大齿轮的速度为:
查《课程设计》P19表3-3大齿轮浸油深度为六分之一大齿轮半径,所以取浸油深度为30mm。
2、滚动轴承的润滑
采用飞溅润滑在箱座凸缘面上开设导油沟,并设挡油盘,以防止轴承旁齿轮啮合时,所挤出的热油溅入轴承内部,增加轴承的阻力。
3、润滑油的选择
齿轮与轴承用同种润滑油较为便利,考虑到该装置用于小型设备选用
L-AN15润滑油
4、密封方式选取:
选用凸缘式端盖,易于调整轴承间隙,采用端盖安装毡圈油封实现密封。
轴承盖结构尺寸按用其定位的轴承外径决定。
设计小结:
二、课程设计总结
设计中运用了Matlab科学工程计算软件,用notebook命令调用MS—Word来完成设计说明书及设计总结,在设计过程中用了机械设计手册2.0 软件版辅助进行设计,翻阅了学过的各种关于力学,制图,公差方面的书籍,综合运用了这些知识,感觉提高许多,当然尤其是在计算机软件CAD 方面的运用,深切感到计算机辅助设计给设计人员带来的方便,各种设计,计算,制图全套完成。
由于没有经验,第一次做整个设计工作,在设计过程中出现了一些错误比如线形,制图规格,零件设计中的微小计算错误等都没有更正,设计说明书的排版也比较混乱等等。对图层,线形不熟悉甚至就不确定自己画出的线,在出图到图纸上时实际上是什么样子都不知道 ,对于各种线宽度,没有实际的概念。再比如标注较混乱,还是因为第一次做整个设计工作,没有经验,不熟悉。
这次设计的目的是掌握机械设计规律,综合运用学过的知识,通过设计计算,绘图以及运用技术标准,规范设计手册等有关设计资料进行全面的机械设计技能训练。目的已经达到,有许多要求、标准心中虽然明确理解掌握但是要全力,全面的应用在实际中,还有待于提高水平。
特别感谢—程莉老师。
参考资料目录
[1]《机械设计基础》,机械工业出版社,任成高主编,2006年2月第一版;
[2]《简明机械零件设计实用手册》,机械工业出版社,胡家秀主编,2006年1月第一版;
[3]《机械设计-课程设计图册》,高等教育出版社,龚桂义主编,1989年5月第三版;
[3]《设计手册软件》,网络上下载;
[4] 湖南工院学生论坛----机械制图专栏---bbs.yeux.cn
Nw=60.0241r/min
Pw=3.08Kw
效率t=0.8762
Pd = 3.5150
Ped=4Kw
i=15.9936
i1=3
i2=5.3312
n0=960r/min
n1=320r/min
n2=60.0241r/min
P0=4Kw
P1=3.8Kw
P2=3.6491Kw
T0=39.7917Nm
T1=113.4063Nm
T2=589.5878Nm
KA=1.1
Pc=4.4Kw
d1=100mm
d2=355mm
初定中心距
a0=350mm
Lc=1461.3mm
Ld=1600mm
中心距
a=420mm
z=3根
预紧力
FQ=274.3N
d1=28mm
d2=45mm
YL10YLd10
T1=113.4063Nm
m=2.5
a=150mm
=20度
Ft=5582.5N
Fr=2031.9N
FH1=FH2=2791.2N
Mav=71.113Nm
MaH=195.38Nm
Ma=216.16Nm
Me=457.15Nm
Fr1=1015.9N
Lh=8760小时
6207型
b h L=14 9 80
输送带拉力 F=2800 N
输送带速度 V=1.1 m/s
滚筒直径 D=350 mm
『柒』 课程设计——链式输送机传动装置减速机
.为什么要加机油呢?
答:机油,机械油,就是润滑油,作用:1,在齿轮啮合部位形成油膜,使啮合的齿轮并没有直接接触,由于理论2齿轮的啮合于一点,但是,实际中,加工误差等因素,使2啮合的齿轮在啮合的瞬间有个滑动量,如果没有油膜隔离,使金属之间直接接触,会产生严重的磨损,产生磨损,就产生大量的热量,传动效率降低,生成的热量会使齿轮产生胶合,点蚀等,致使齿轮失效,,,通过加润滑油,在齿轮上产生油膜,阻碍齿轮直接接触,同时润滑油可以带走齿轮啮合时产生的热量,有冷却的作用,也会冲掉齿轮啮合产生的磨损铁屑,起到清洁作用,大概就是这些,详细的你可以网络查一下,但这些应该足够了,呵呵。
2.减速机原理,主要是通过齿轮啮合达到降低转速,提高输出扭矩的,当然有特别的有行星减速机,摆线减速机,三环减速机等,你可以网络搜索一下,很多信息,,,,至于无极调速机,是在减速机内集成一个无极调速的装置,主要是摩擦盘式的,通过调整两部分摩擦盘接触面积达到调整输出速度的
3.加油口一般在减速机的最高处,有的是透气栓兼做加油口的,就是拧掉透气栓后的口用来加油的,减速箱的加油口一般是观察窗,别的小的减速电机的加油口有用螺塞的,拧掉螺塞后的孔用来加油
『捌』 机械设计课程设计的图书目录
第一部分 机械设计课程设计基础知识
第1章 概述 (1)
1.1 课程设计的目的、内容和任务 (1)
1.2 课程设计的一般步骤 (2)
1.3 课程设计中应正确对待的几个问题 (3)
第2章 机械传动系统的总体设计 (4)
2.1 拟定传动系统方案 (4)
2.2 原动机类型与参数的选择 (6)
2.2.1 选择电动机的类型和结构形式 (7)
2.2.2 选择电动机的容量 (7)
2.2.3 确定电动机的转速 (8)
2.3 机械传动系统的总传动比及各级传动比的分配 (8)
2.3.1 传动比分配的一般原则 (8)
2.3.2 传动比分配的参考数据 (9)
2.4 机械传动系统运动和动力参数的计算 (10)
2.5 机械传动系统的总体设计示例 (11)
第3章 减速器的构造、润滑及密封 (15)
3.1 减速器的类型、特点及应用 (15)
3.2 减速器的结构 (17)
减速器的箱体结构 (17)
3.3 减速器的润滑 (20)
3.3.1 齿轮和蜗杆传动的润滑 (20)
3.3.2 滚动轴承的润滑 (23)
3.4 减速器的密封 (25)
3.4.1 轴端的密封 (25)
3.4.2 轴承室内侧的密封 (26)
3.4.3 其他处的密封 (27)
3.5 减速器的附件 (27)
第4章 传动零件设计计算 (29)
4.1 外传动零件设计 (29)
4.2 内传动零件设计计算 (31)
第5章 减速器装配草图的设计 (38)
5.1 减速器装配工作图设计概述 (38)
5.2 初绘减速器装配草图 (39)
5.3 轴、轴承的校核计算 (44)
5.4 完成减速器装配草图设计 (45)
第6章 减速器零件工作图设计 (59)
6.1 零件工作图的基本要求 (59)
6.2 轴零件工作图设计 (60)
6.3 齿轮类零件工作图设计 (61)
6.4 箱体零件工作图设计 (63)
6.5 减速器附件设计 (68)
第7章 减速器装配工作图设计 (73)
7.1 对减速器装配工作图视图的要求 (73)
7.2 减速器装配图内容 (73)
第8章 设计计算说明书编写及答辩 (78)
8.1 设计计算说明书的要求 (78)
8.2 设计计算说明书的内容 (78)
8.3 设计计算说明书的书写格式 (79)
8.4 课程设计答辩 (81)
8.4.1 课程设计总结 (81)
8.4.2 课程设计答辩目的、准备工作与问题题目 (82)
第9章 设计题目 (86)
9.1 设计带式输送机的动力和传动装置部分 (86)
9.2 设计螺旋输送机的动力和传动装置部分 (88)
9.3 设计卷扬机的动力和传动装置部分 (90)
9.4 设计NGW行星齿轮减速器 (91)
第二部分 机械设计课程设计常用标准和规范
第10章 常用数据和一般标准 (93)
10.1 常用数据 (93)
10.1.1 常用材料的密度(表10-1) (93)
10.1.2 常用材料的弹性模量及泊松比(表10-2) (94)
10.1.3 金属材料熔点、热导率及比热容(表10-3) (94)
10.1.4 常用材料的线膨胀系数(表10-4) (94)
10.1.5 常用材料极限强度的近似关系(表10-5) (95)
10.1.6 硬度值对照表(表10-6) (95)
10.1.7 常用标准代号(表10-7) (96)
10.1.8 常用法定计量单位及换算(表10-8) (96)
10.1.9 常用材料的摩擦系数(表10-9,表10-10) (97)
10.1.10 机械传动和轴承的效率概略值和传动比范围(表10-11,表10-12) (98)
10.1.11 希腊字母(表10-13) (99)
10.2 一般标准 (100)
10.2.1 图样比例、幅面及格式(表10-14,表10-15) (100)
10.2.2 装配图中零部件序号及编排方法 (101)
10.2.3 优先数系和标准尺寸(表10-16) (102)
10.2.4 中心孔(表10-17,表10-18) (103)
10.2.5 轴肩与轴环尺寸(表10-19) (104)
10.2.6 零件倒圆与倒角(表10-20) (105)
10.2.7 砂轮越程槽(表10-21) (105)
10.2.8 退刀槽、齿轮加工退刀槽(表10-22,表10-23,表10-24) (106)
10.2.9 刨削、插削越程槽(表10-25) (107)
10.2.10 齿轮滚刀外径尺寸(表10-26) (108)
10.2.11 锥度与锥角系列(表10-27) (108)
10.2.12 机器轴高和轴伸(表10-28~表10-31) (109)
10.2.13 铸件最小壁厚和最小铸孔尺寸(表10-33,表10-34,表10-35) (113)
10.2.14 铸造过度斜度与铸造斜度(表10-36,表10-37) (115)
10.2.15 铸造内圆角(表10-38) (115)
10.2.16 铸造外圆角(表10-39) (116)
10.2.17 焊接符号及应用示例(表10-40,表10-41) (117)
第11章 机械工程材料 (119)
11.1 黑色金属材料 (119)
11.1.1 灰铸铁(表11-1) (119)
11.1.2 球墨铸铁(表11-2) (120)
11.1.3 铸钢(表11-3) (121)
11.1.4 普通碳素结构(表11-4) (122)
11.1.5 优质碳素结构钢(表11-5) (122)
11.1.6 合金结构钢(表11-6) (125)
11.2 有色金属材料 (127)
11.2.1 铸造铜合金(表11-7) (127)
11.2.2 铸造铝合金(表11-8) (129)
11.2.3 铸造轴承合金(表11-9) (131)
11.3 型钢与型材 (132)
11.3.1 冷轧钢板和钢带 (132)
11.3.2 热轧钢板 (134)
11.3.3 热轧圆钢(表11-25) (138)
11.3.4 冷拉圆钢、方钢、六角钢(表11-26) (140)
11.3.5 热轧等边角钢(表11-27) (141)
11.3.6 热轧不等边角钢(表11-28) (144)
11.3.7 热轧槽钢(表11-29) (148)
11.3.8 热轧L形钢(表11-30) (149)
11.3.9 热轧工字钢(表11-31) (150)
第12章 电动机 (152)
12.1 Y系列三相异步电动机 (152)
12.2 YZR、YZ系列冶金及起重用三相异步电动机 (165)
第13章 连接件和紧固件 (170)
13.1 螺纹 (170)
13.2 螺栓 (173)
13.3 螺柱 (177)
13.4 螺钉 (178)
13.5 螺母 (183)
13.6 垫圈 (185)
13.7 螺纹零件的结构要素 (187)
13.8 挡圈 (190)
13.9 键连接 (194)
13.10 销连接 (197)
第14章 联轴器与离合器 (199)
14.1 联轴器 (199)
14.1.1 常用联轴器的类型选择 (199)
14.1.2 常用联轴器 (200)
14.2 离合器 (210)
14.2.1 机械离合器的类型选择(表14-10) (210)
14.2.2 简易传动矩形牙嵌式离合器(表14-11) (211)
第15章 滚动轴承 (212)
15.1 常用滚动轴承 (212)
15.2 滚动轴承的配合和游隙 (224)
15.2.1 滚动轴承与轴和外壳的配合 (224)
15.2.2 滚动轴承的游隙要求 (228)
第16章 公差配合、几何公差、表面粗糙度 (231)
16.1 极限与公差、配合 (231)
16.1.1 术语和定义 (231)
16.1.2 标准公差等级 (232)
16.1.3 公差带的选择 (234)
16.1.4 配合的选择 (235)
16.2 几何公差 (247)
16.2.1 术语和定义 (247)
16.2.2 几何公差的类别和符(代)号 (248)
16.2.3 几何公差的注出公差值及应用举例 (249)
16.3 表面粗糙度 (253)
16.3.1 评定表面粗糙度的参数及其数值系列 (253)
16.3.2 表面粗糙度的符号及标注方法 (253)
16.3.3 不同加工方法可达到的表面粗糙度(表16-19) (255)
第17章 齿轮、蜗杆传动精度 (258)
17.1 渐开线圆柱齿轮精度 (258)
17.1.1 定义与代号 (258)
17.1.2 等级精度及其选择 (259)
17.1.3 极限偏差(表17-6) (260)
17.2 圆锥齿轮精度 (264)
17.2.1 锥齿轮、齿轮副误差及侧隙的定义和代号 (264)
17.2.2 精度等级 (266)
17.2.3 公差组与检验项目 (266)
17.2.4 齿轮副侧隙 (271)
17.2.5 图样标注 (274)
17.2.6 锥齿轮的齿坯公差 (275)
17.3 圆柱蜗杆、蜗轮的精度 (276)
17.3.1 蜗杆、蜗轮、蜗杆副术语定义和代号 (276)
17.3.2 精度等级和公差组 (278)
17.3.3 蜗杆、蜗轮及传动的公差 (279)
17.3.4 蜗杆传动的侧隙 (282)
17.3.5 齿坯公差和蜗杆、蜗轮的表面粗糙度 (284)
17.3.6 图样标注 (285)
第18章 润滑与密封 (287)
18.1 润滑剂 (287)
18.2 润滑装置 (288)
18.2.1 间歇式润滑常用的润滑装置 (288)
18.2.2 油标和油标尺 (290)
18.3 密封装置 (292)
第三部分 减速器参考图例
第19章 减速器装配图 (297)
第20章 减速器零件图 (300)
参考文献 (312)
『玖』 课程设计 胶带输送机传动装置的设计 求大神帮帮忙!!!完全不会
优先发展电力、煤炭、冶金和铁路运输等国民经济基础工业部门是朝鲜劳动党一贯方针,也是朝鲜国防工业先行、同时发展轻工业和农业的先军时代经济建设路线的重要要求。近年来,朝鲜在这一方针的指导下,在优先发展基础工业部门方面取得了很大成就,奠定了建设经济强国的坚实基础。进入2009年,朝鲜人民更是充满信心,士气高昂地加快基础工业部门发展,期待实现经济的再一次腾飞。
近年来,朝鲜在促进大型水电站建设的同时,还按地方特点大力促进中小型水电站的建设,在全国各地兴建了许多水电站。但是,日益增长的电力需要和日益扩大的经济规模导致电力仍然短缺。为此,朝鲜电力部门制定了在尽快促进在建大型水电站建设的同时,继续兴建新的电站,最大限度有效利用现有电站的发电能力。一些水电厂积极采用先进科技,提高发电机效率,增加电力生产。此外,朝鲜电力部门还开发多种有价值的经营程序,在促进生产工序信息化的同时,及时检修发电机,提高燃烧效率,按技术规程运转设备,提高发电力。金正日总书记数次视察各地水电站建设情况,提出目标和要求,显示朝鲜对电力问题的重视。
在煤炭生产方面,朝鲜今年计划优先进行掘进和矿井建设,以建设更多新的采煤场,把力量集中到蕴藏量丰富、发展前景大的大型煤矿,在此基础上,进一步增加原有煤矿的产量。许多煤炭生产部门整顿并充实了电车,置备了大量货车和长途胶带输送机零部件,创造了能够尽快输送煤炭的良好条件。冶金方面,朝鲜依靠自己的燃料、原料、技术和资源研发更多新的钢铁生产方法,力争靠科技提高冶金生产率。一些钢铁厂在进行熔解炉科学管理、提高熔解实收率的同时,加强废铁甄别作业,有效利用压力机和切割机,积极采用新的生产方法,提高生产效率。
“运输即生产”,这一口号反映了朝鲜对运输部门的重视。在运输部门当中,铁路运输占有非常重要的作用。新年以来,朝鲜各地铁路局在许多区段进行更换枕木、压紧路基、补充砾石等工作。一些路段采用各种混凝土轨枕,克服了浪费燃料等运输方面的不合理性。此外,朝鲜今年还将大力促进铁路整修和铁路电气化,充分保障国民经济各部门的运输需要。
高举自力更生旗帜是朝鲜发展国民经济基础工业部门的重要原则。依靠科技,改造现有技术装备和生产工序则是自力更生的重要途径。在新年联合社论号召下,在金正日总书记的领导下,朝鲜人民紧密团结,满怀信念,朝着2012年敞开强盛大国大门的目标奋勇前进。