当前位置:首页 » 课程大全 » 具有30秒数字显示器课程设计

具有30秒数字显示器课程设计

发布时间: 2021-02-03 07:29:25

❶ 30秒倒计时器课程设计

【摘 要】篮球比赛30秒钟规则规定:进攻球队在场上控球时必须在30秒钟内投篮出手(NBA比赛为24秒,全美大学体育联合会比赛中为35秒),因此在比赛时裁判既要看比赛又要看秒表计时,而本文介绍的30秒倒计时器可以解决此问题。

【关键词】AT89C51单片机、30秒倒计时器、LED

30秒倒计时器的设计和制作有很多方法,本文介绍的30秒倒计时器以AT89C51单片机作为控制单元,采用两个数码管显示时间,用三个按键分别控制计时器的计时开始、复位和暂停。倒计时器初始状态显示“30”,当裁判员按下计时键,30秒倒计时开始,当计时器时间减到0时,计时器发出声光报警,提示裁判计时时间已到。

一、电路设计

30秒倒计时器的电路主要由电源电路、单片机最小系统、按键输入、显示驱动电路、报警电路组成,30秒倒计时器控制电路如图1所示。

图1 30秒倒计时器电路原理图

1、按键输入

“30秒倒计时器”采用了三个按键来完成计数器的启动计数、复位、暂停/继续计数等功能。

(1)K1键:启动按钮(P3.2)。

按下K1键,计数器倒计时开始,数码管显示数字从30开始每秒递减计数,当递减到到零时,报警电路发出声、光报警信号。当计数器处于暂停状态时按下K1键将回到计时状态。

(2)K2键:复位按钮(P3.3)。

按下K2键,不管计数器工作于什么状态,计数器立即复位到预置值 “30” ,在报警状态时按下K2键还可取消报警。

(3)K3键:暂停/计时切换按钮(P3.4)。

当计数器处于计时状态时按下该键计数器暂停计时,数码管显示数字保持不变;当计数器处于暂停状态按下该键计数器将回到计时状态;初始状态时该键无效。

2、显示驱动电路

“30秒倒计时器”用两个共阳数码管来显示时间,数码管显示方式为动态显示。显示驱动电路中,数码管的段码引脚通过470欧的电阻接到单片机的P1口,两个片选引脚各通过一个9012连接到正5V电源,由P3.0和P3.1控制。

4、报警电路

计时时间减到0,显示数码管显示“00”时,发光二极管D1由P3.5控制发出光报警,同时蜂鸣器由P3.7控制发出声报警。

二、软件编程思路

1、全局变量

“30秒倒计时器”动作流程主要受三个全局变量控制。首先是bit变量“act”,当“act”为“1”时倒计时开始,为“0”时倒计时停止,“act”初值为“0”,可以由按钮操作将其置“1”或清“0”。第二个全局变量是char变量“time”,存放倒计时的时间,当倒计时时间为0时,发出声光报警。变量“time”的初值为30,定时中断服务程序在“act”为1时,每1s对其进行减1操作,减到0时保持为0,按下“复位键”可将“time”复位为30。第三个全局变量是int变量“t”,记录响应定时中断0的次数。根据初始化定义,定时器0以方式1工作,每1ms发出一次中断请求。控制程序只开放了定时器0中断,因此不会有比定时器0中断更高级的中断被允许,所以每次请求都会立刻被响应。响应后在中断服务程序中将全局变量“t”加1记录响应中断次数,每响应1000次即为1秒钟。变量“t”初值为0,在中断服务程序中加1,当“t”为2000时由中断服务程序清0。在按键驱动程序中,按下启动键、复位键、暂停/启动键时将“t”清0,目的是从0ms开始计时。

2、控制流程

主程序主要用来检测全局变量“time”当“time”为0时发出“声光报警”。按键驱动、显示驱动和“time”操作都在定时器0中断服务程序中进行。其控制流程如图2所示。

图2 控制流程图

三、软件程序设计

1、数码管驱动程序

到计时器的两个数码管以动态显示的方式显示计时时间“time”(全局变量),LED1显示“time”的十位,LED2显示“time”的个位。

(1)定义段码数据口和片选信号

根据实际电路,在C51中定义段码的数据口为P1,两个片选信号为P3.0和P3.1。定义如下:

#define an P1

sbit wei1=P3^0;

sbit wei2=P3^1;

(2)定义字形码

LED显示数字0~9以及全灭的字形码表格放在数组zixing[]中。字形码是固定的表格,定义时加上关键字“code” 表示该表格存放在程序存储器中。

unsigned char code zixing[]=

{

0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0xff

};

(3)定义数码管LED1和LED2的显示变量

为了增加驱动程序的可移植性,笔者为数码管LED1和LED2定义了显示变量。显示变量就是本驱动程序的对外接口,外部程序只要改变显示变量的值就可改变数码管显示的数值。定义方式如下:

unsigned char led_str[2]={10,10};

led_str[0]直接对应数码管LED1, led_str[1]直接对应数码管LED2。本项目中由专门的子程序将全局变量time计算拆分成led_str[0]和led_str[1]。

void js()

{

led_str[1]=time/10%10;

led_str[0]=time%10;

}

(4)数码管驱动程序

数码管驱动程序“void chushi(char i)”在定时中断服务程序中被调用执行。根据初始化程序的定义,定时中断服务程序每1ms被执行一次。定时中断服务程序中运用全局变量“t”记录进入该服务程序的次数,“t”计满2000由定时中断服务程序清零。

数码管驱动程序的参数“char i”是用来确定当前点亮的是LED1还是LED2,当参数为“0”时点亮LED1,参数为“1”时点亮LED2。如果我们希望偶数次进入定时中断服务程序时点亮LED1,奇数次进入定时中断服务程序时点亮LED2,我们可以用程序调用语句“chushi(t%2);”轻松实现。

进入数码管驱动程序后首先调用子函数js(),计算当前的led_str[0]和led_str[1]。接下来将两个数码管全部熄灭以防止余晖的出现。最后点亮需要点亮的数码管并送出字型码。驱动程序代码如下:

void chushi(char i)

{

js(); //计算显示变量

an=0xff; //去余晖

wei1=i; wei2=!i; //确定片选

an=zixing[led_str[i]]; //送字型码

}

2、按键驱动程序

按键驱动程序分为按键识别和按键功能执行两部分。按键功能执行可在按键按下时或按键抬起后执行,文中将其设计在按键抬起后执行。

(1)定义按键I/O地址

根据实际电路,三个按键(启动键、复位键、暂停/启动键)分别接在P3口的P3.2,P3.3和P3.4三个引脚上。为了取键值方便还将P3口定义为“iokey”,程序中可作定义如下:

#define iokey P3

sbit key1=P3^2;

sbit key2=P3^3;

sbit key3=P3^4;

(2)按键驱动流程

按键识别的通用流程为:I/O口写“1”→判断有无键按下→延时去抖→确定键值→等待按键抬起→执行按键功能。按键驱动程序中定义了两个静态变量“ts” 和“kv”,分别用来延时去抖和存放键值。

(3)延时去抖

静态变量“ts”用来延时去抖。按键驱动程序在定时中断服务程序中每1ms被执行一遍,每检测到有键按下“ts”加1,检测到无键按下“ts”清0。按键连续按下20ms,则连续20次执行按键驱动程序时都检测到有键按下,此时静态变量“ts”累加到20,可确认按键按下有效。

为防止按键一直按着不放而使“ts”累加到溢出,确认有键按下后可使“ts”的值保持为20,或大于20的某一个值如21。

(4)取键值

确认有键按下后即可通过读取按键的I/O口状态来得到键值。为读取P3.2、P3.3和P3.4引脚状态,屏蔽P3口其他引脚的影响,可将读取后的数值按位或上11100011B(0xE3)再送给静态变量“kv”。

静态变量“kv”存放按键的键值,无键按下或按键抬起后kv的值为0。按下启动键key1时kv=11111011B(0xFB),按下复位键key2时kv=11110111B(0xF7),按下暂停/启动键key3时kv=11101111B(0xEF)。

(5)执行按键功能

按键抬起后第一次执行按键驱动程序时,静态变量“kv”任保持着按键按下时最后得到的键值,以该键值作为参数调用按键执行程序“actkey(kv);”即可执行按键功能。调用后kv值立刻清0,确保按一次键执行一次按键功能。驱动程序代码如下:

void key()

{

static unsigned char kv=0;

static unsigned char ts=0;

key1=1;key2=1;key3=1;

if(!(key1&key2&key3))

{

ts++;

if(ts>=20)ts=20; //有键按下

if(ts==20)

kv=iokey|0xe3; //取键值

}

else

{ //无键按下或按键已抬起

actkey(kv);

ts=0;

kv=0;

}

}

函数actkey(kv)用来根据键值“kv”执行相应操作。当“kv”等于0xFB时代表启动键key1按下,函数actkey(kv)将全局变量act赋值为“1”。当“kv”等于0xF7时代表复位键key2按下,函数actkey(kv)将全局变量“time”复位为“30”。当“kv”等于0xEF时代表暂停/启动键按下,函数actkey(kv)将全局变量act取反。每按一个按钮都有将全局变量“t”清0的操作,目的是每当复位、或启动计时时,进入定时中断的次数都从0开始计算,否则会出现第1秒计时不准确的现象。程序代码如下:

void actkey(unsigned char k)

{

switch(k)

{

case 0xfb:act=1;t=0;break;

case 0xf7:time=30;t=0; break;

case 0xef:act=~act;t=0; break;

}

}

四、结束语

本文在编程过程中以面向对象的编程思路封装了两个LED数码管和三个独立按键。当其驱动程序在定时中断服务程序中被调用,编程者只要操作其接口:数组“led_str[2]”和函数“actkey(unsigned char k)”,无需直接对硬件进行编程即可改变功能,增强了软件的通用性和可移植性。

❷ 你们有没有数字电路逻辑的三位数字显示器的课程设计

具体什么要求
我做电子设计的

❸ 有没有谁知道数字秒表的课程设计怎么做的(关键是要记录8个运动员的成绩用四位数码管显示)

数字电子技术基础课程设计(一)——电子钟
数字电子技术基础
课程设计
电子秒表
一.设计目的:
1、了解计时器主体电路的组成及工作原理;
2、熟悉集成电路及有关电子元器件的使用;
3、学习数字电路中基本RS触发器、时钟发生器及计数、译码显示等单元电路的综合应用。
二.设计任务及说明:
电子秒表电路是一块独立构成的记时集成电路芯片。它集成了计数器、、振荡器、译码器和驱动等电路,能够对秒以下时间单位进行精确记时,具有清零、启动计时、暂停计时及继续计时等控制功能。

设计一个可以满足以下要求的简易秒表

1.秒表由5位七段LED显示器显示,其中一位显示“min”,四位显示“s”,其中显示分辩率为0.01 s,计时范围是0—9分59秒99毫秒;

2.具有清零、启动计时、暂停计时及继续计时等控制功能;
3.控制开关为两个:启动(继续)/暂停记时开关和复位开关
三.总体方案及原理:
电子秒表要求能够对时间进行精确记时并显示出来,因此要有时钟发生器,记数及译码显示,控制等模块,系统框图如下:

时钟发生器

记数器

译码器

显示器

控制器
图1.系统框图
其中:
(1)时钟发生器:利用石英震荡555定时器构成的多谐振荡器做时钟源,产生100HZ的脉冲;
(2)记数器:对时钟信号进行记数并进位,毫秒和秒之间10进制,秒和分之间60进制;
(3)译码器:对脉冲记数进行译码输出到显示单元中;
(4)显示器:采用5片LED显示器把各位的数值显示出来,是秒表最终的输出,有分、秒、和毫秒位;
(5)控制器:控制电路是对秒表的工作状态(记时开始/暂停/继续/复位等)进行控制的单元,可由触发器和开关组成。
四.单元电路设计,参数计算和器件选择:
1.时钟发生单元
时钟发生器可以采用石英晶体震荡产生100HZ时钟信号,也可以用555定时器构成的多谐振荡器,555定时器是一种性能较好的时钟源,切构造简单,采用555定时器构成的多谐振荡器做为电子秒表的输入脉冲源。
因输出要求为100HZ的,选择占空比为55%,可根据

T=( )Cln2=0.01
可选择的电阻进行连接可在输出端3获得频率为100HZ的矩形波信号,即T=0.01S的时钟源,当基本RS触发器Q=1时,门5开启,此时100HZ脉冲信号通过门5作为计数脉冲加于计数器①的计数输入端CP2。

图2.时钟发生器555定时器构成的多谐振荡器
2.记数单元

记数器74160、74ls192、74ls90等都能实现十进制记数,本设计采用二—五—十进制加法计数器74LS90构成电子秒表的计数单元,如图3所示,555定时器构成的多谐振荡器作为计数器①的时钟输入。计数器①及计数器②接成8421码十进制形式,其输出端与实验装置上译码显示单元的相应输入端连接,可显示0.01~0.09秒;0.1~0.9秒计时,计数器②及计数器③,计数器③和计数器④也接成8421码十进制形式,计数器④和计数器⑤接成60进制的形式,实现秒对分的进位。
集成异步计数器74LS90简介
74LS90是异步二—五—十进制加法计数器,它既可以作二进制加法计数器,又可以作五进制和十进制加法计数器。
图3为74LS90引脚排列,表1为功能表。
通过不同的连接方式,74LS90可以实现四种不同的逻辑功能;而且还可借助R0(1)、R0(2)对计数器清零,借助S9(1)、S9(2)将计数器置9。其具体功能详述如下:
(1)计数脉冲从CP1输入,QA作为输出端,为二进制计数器。
(2)计数脉冲从CP2输入,QDQCQB作为输出端,为异步五进制加法计数器。
(3)若将CP2和QA相连,计数脉冲由CP1输入,QD、QC、QB、QA作为输出端,
则构成异步8421码十进制加法计数器。
(4)若将CP1与QD相连,计数脉冲由CP2输入,QA、QD、QC、QB作为输出端,
则构成异步5421码十进制加法计数器。
(5)清零、置9功能。
a)
异步清零

当R0(1)、R0(2)均为“1”;S9(1)、S9(2)中有“0”时,实现异步清零功能,即QDQCQBQA=0000。
b)
置9功能
当S9(1)、S9(2)均为“1”;R0(1)、R0(2)中有“0”时,实现置9功能,即QDQCQBQA=1001。
图3.74LS90引脚排列(下)



输 出


清 0
置 9
时 钟
QD QC QB QA
R0(1)、R0(2)
S9(1)、S9(2)
CP1 CP2

1
1
0
×
×
0
×
×
0
0
0
0

0
0
×
×
0
1
1
×
×
1
0
0
1

9
0
×
×
0
0
×
×
0

1
QA
输 出
二进制计数

1

QDQCQB输出
五进制计数


QA
QDQCQBQA输出8421BCD码
十进制计数

QD

QAQDQCQB输出5421BCD码
十进制计数

1
1





表1 .74LS90功能表
10秒到分位的6进制位可在十进制的基础上将QB、QC连接到一个与门,它的置零信号与系统的置零信号通过一个或门连接接至R0(1),即当记数为6或有置零信号是均置零,如图4所示。

图4 .74ls90组成的6进制记数器
3 .译码显示单元
74LS248(74LS48)是BCD码到七段码的显示译码器,它可以直接驱动共阴极数码管。它的管脚图如图5所示. 显示器用 LC5011-11 共阴极LED显示器.(注:在multisim中仿真可以用译码显示器DCD_HEX代替译码和显示单元)。

图5. 74LS248管脚图
4 .控制单元
(1)
启动(继续)/暂停记时开关
采用集成与非门构成的基本RS触发器。属低电平直接触发的触发器,有直接置位、复位的功能。
它的一路输出作为单稳态触发器的输入,另一路输出Q作为与非门5的输入控制信号。
按动按钮开关B(接地),则门1输出 =1;门2输出Q=0,K2复位后Q、状态保持不变。再按动按钮开关K1 ,则Q由0变为1,门5开启, 为计数器启动作好准备。由1变0,送出负脉冲,启动单稳态触发器工作。
(2)
清零开关
通过开关对每个计数器的R0(2)给以高电平能实现系统的清零。
五:在MULTISIM中进行仿真
将各个芯片在MULTISIM8中连接并进行仿真,仿真如图6所示,结果正确。
六:设计所需元件
555触发器一片,74ls90五片,74ls248五片,LC5011-11 共阴极LED显示器五片,
电容、电阻若干。
七:设计心得
本次课程设计对数字电子技术有了更进一步的熟悉,实际操作和课本上的知识有很大联系,但又高于课本,一个看似很简单的电路,要动手把它设计出来就比较困难了,因为是设计要求我们在以后的学习中注意这一点,要把课本上所学到的知识和实际联系起来,同时通过本次电路的设计,不但巩固了所学知识,也使我们把理论与实践从真正意义上结合起来,增强了学习的兴趣,考验了我们借助互联网络搜集、查阅相关文献资料,和组织材料的综合能力。

❹ max-plus篮球竞赛30秒计时器设计

MAX PLUS II 主要是提供你的一些器件提取
你只要自己找到连接的电路图就能用了
MAX PLUS II的基础操作还是很简单的

❺ 课程设计——星期数字显示器

留名.貌似我一直很出名,,,

❻ 数字逻辑课程设计数字式秒表的设计,

这个难度系数好高,数学不好抱歉,希望有人可以帮助到你。

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919