当前位置:首页 » 课程大全 » 地震资料数据处理方法课程设计

地震资料数据处理方法课程设计

发布时间: 2021-02-04 12:33:45

Ⅰ 地震资料处理的流程是什么

在地震资料数字处理工作中,经常要用到“处理流程”这个词。什么叫处理流程呢?处理流程就像汽车制造厂生产汽车一样需要有一套生产程序,并在生产程序中规定了详细的工作内容和质量标准,把复杂的生产工作规范成科学的有条不紊的一环扣一环的生产过程。地震资料数字处理工作也是一种生产过程,而且是一个非常复杂的、运用到多门学科知识的生产过程。为了保证处理工作秩序和质量,根据野外采集工作特点和地质任务的要求,制订了相应的生产程序,专业上把这个生产程序叫做处理流程。为了控制每一步的处理质量,还在处理流程中的一些关键工序上强行设置了质量检查点,即上一道工序经检验合格后,才能进入下道工序,这样就能有效地保证每一步的生产质量。
地震资料处理流程不是一成不变的。为适应野外采集特点,制订有二维地震资料处理流程、三维地震资料处理流程;根据地质任务的不同,制订有常规处理流程、特殊处理流程。在处理流程中,可考虑工区的地形条件、干扰波的特点,采用针对性更强的处理方法和处理手段。另外,随着处理技术的发展,为了不断地提高处理质量,为解释工作提供更多、更准确的信息,在处理流程中也要不断地补充新的处理技术、新的处理方法。由此可见,地震资料数字处理工作是一项复杂的工作。

Ⅱ 地震资料处理流程

将各种处理方法进行有序的组合,并按先后顺序依次进行处理的过程称为地震资料处理专流程,如图3-1。该属图为二维地震资料的参考处理流程,实际应用中可根据资料情况增减处理方法。处理流程图中的纵向主线流程为必选处理方法,而横向线流程为可选处理方法。一般已将各种处理方法编制成模块形式的计算程序,组建成地震资料处理系统,处理中对方法的组合实际是对处理模块的组合,由各种地震资料处理模块组合成处理流程。处理模块又分批量处理和交互处理两种。批量处理是计算机按处理流程自动依次连续处理,中途不进行人工干涉。而交互处理则是利用可视化图形图像功能,通过人机对话方式,对处理过程进行监控,可随时修改处理参数,检查处理效果,甚至改变处理流程。

图3-1 地震资料处理流程

Ⅲ 地震资料处理技术

由于崎岖海底的存在,横跨海底界面强烈的侧向速度变化使得下伏地层随着海底起伏,构造形态严重畸变,根本不能反映构造的真实面貌,严重影响了下伏地层的地震成像。近年来,针对崎岖海底采用多种手段,从实验室正演模拟、采集参数的试验、处理方法及时深转换等做了大量的一系列的攻关,进一步揭示了深水崎岖海底区地震波传播的本质特征,及崎岖海底对地震波的影响机理和成像畸变的因素;通过对崎岖海底区地震处理的攻关,特别是对崎岖海底区绕射多次波的压制改善了地震资料的品质;通过对层替换技术、波场延拓技术、叠前深度偏移处理等多种方法进行了处理试验,确定了叠前深度偏移对崎岖海底的处理流程,解决了由崎岖海底造成的构造畸变问题。

同时,在长电缆大偏移距条件下,有些常规处理技术已不能应用,如以双曲线反射走时为基础的动校正,速度分析和水平叠加以及压制多次波的方法。近来国际上速度分析的研究可归纳为三个方面:一是叠前速度分析方法向非双曲线反射走时方程为基础发展,二是改善层速度的计算方法,三是偏移速度分析方法发展迅速,这与叠前深度偏移的兴起有关,主要是层析成像方法。

(一)已有地震资料分析

深水区多年度陆续采集了部分地震资料,有些资料由于年代久远已无法利用,为此已有地震资料分析主要有目的地针对1979年和1997年采集的地震资料进行分析。主要针对噪音分析、主要干扰波类型、多次波发育分布情况等方面进行分析。

1.噪音分析

噪音分析主要是评估涌浪噪音的分布频带和固有噪音的主要频带,我们采用的分析手段主要是FK分析和频谱分析。涌浪噪音主要是低频噪音,其频带主要集中在10Hz以下。固有噪音的频带主要集中在30~65Hz之间,其主要噪音源是地震采集船的螺旋桨转动。

2.主要干扰波类型、多次波发育分布分析

主要干扰波类型、多次波发育分布分析主要是评估干扰波类型、多次波发育的主要频带。采用的分析手段主要是FK分析和频谱分析。干扰波的主要类型是线性干扰。线性干扰波的主要频带分布集中在20Hz以下。

多次波主要表现为海底多次等长周期多次波,其频带分布与一次波极其相似,主要能量集中在30~60Hz之间,能量较一次有效反射强,掩盖了有效的一次波反射,并等时重复出现。其次,多次波还表现为崎岖海底区的绕射多次波。由于存在崎岖不平的海底,海底多次波在地震剖面上的反映也不一致,海底较平时,由于多次波和正常地层速度上的差异,可以通过Tau-P域去多次等传统的方法来消除,但海底崎岖造成海底的角度很大的斜层,这种很强的海底斜层产生的多次波,由于其速度和下覆地层没有太大的差别,就很难通过常规的方法来消除,使得地震剖面的中深层横向能量很不均匀,造成偏移剖面划弧现象(图5-1)。

这些多次波不但严重干扰了凹陷内有效反射,造成凹陷内地震资料信噪比极低,而且对基底反射也产生较强的干扰,严重影响了该地区地震资料的地质解释和研究。因此,压制和消除多次波成为深水地震资料采集和处理的重点。

通过分析,复杂海底与地下结构是影响该地区资料品质的主要因素。深水地震资料具有以下特点:海底构造复杂,水深变化剧烈,侧面反射以及斜坡带内能量反射很弱;噪音以低频干扰、中深层高频干扰、异常值为主;浅层的频带较中深层宽,中深层信噪比和分辨率低;多次波干扰以深层海底及长周期多次波为主,能量强,存在散射多次波;崎岖基底引起的中深层速度拾取复杂。

图5-1 崎岖海底区强绕射多次波

(二)处理技术方法

根据对原始资料的分析,对工区地质情况的调查,结合地质任务和处理要求,采取的处理对策为:SRME、高精度拉冬和LIFT技术组合多次波衰减技术;通过确定性子波处理和沿海底构造处理的串联组合多道反褶积技术压制延续相位;针对信噪比很低的斜坡带,采用频谱整形技术提高该区域资料的信噪比;针对凹陷内随机噪音严重的地方,采用多域去噪技术提高信噪比;进行高精度速度分析,构造复杂部位加密控制点,对目标区前后剖面进行认真对比,反复迭代以提高速度分析的正确性及合理性;利用叠前深度偏移解决该区崎岖海底及高陡构造成像问题。

1.多次波衰减技术

衰减多次波是本次地震数据处理的重点和难点之一。虽然压制多次波的方法有很多,但没有一个能在所有条件下除去所有的多次反射波。

针对工区多次波具有的特征,经过多次试验,采取了SRME(海底多次波衰减)、高精度拉冬及LIFT多域组合多次波衰减技术,通过三步法对多次波进行逐步压制,并取得了非常理想的效果。

在海上地震勘探中,近道多次波是最难处理的相干噪音之一,特别是在浅层气的影响下,近道多次波更是难以压制。常规衰减近道多次波的技术是预测反褶积组合内切除,该技术简单有效,但在衰减多次波的同时,有效信号也被去掉了,破坏了道集的完整性,给后续处理带来一定的困扰。

本次我们研发了一种有效衰减近道多次波的LIFT技术,该技术是根据AVO原理模拟有效信号,通过局部时窗进行信噪分离。实践证明,该技术既能有效衰减近道多次波,又能很好地保留有效信号,为后续处理打下坚实的基础。

2.串联组合反褶积技术

海洋地震资料因为采集时气枪沉放离海面有一定的深度,所以在气枪因压力爆炸后的瞬间会产生较大的气泡升至海面,再加上涌浪的干扰,期间的信号因此来回摆动,所以经检波器接收到的信号中就产生了延续性的相位。此次采集所产生的延续相位在浅水和深水区的深层均有较强的体现,有的甚至覆盖有效信号。所以针对严重的延续相位,采用了确定性子波反褶积和多道反褶积串联组合来压制,并取得了较为理想的效果(图5-2)。相比统计性子波反褶积,确定性子波反褶积更有针对性,且有效地保护了浅层信号、频率振幅特征。

图5-2 串联反褶积效果图

3.频谱整形技术

针对斜坡带与基底低信噪比区域,在迭代前采用了频谱整形技术来提高信噪比(图5-3)。

图5-3 频谱整形效果对比图

4.多域去噪技术

斜坡、凹陷等处能量反射很弱,造成信噪比很低,采取多域去噪技术提高信噪比。多域去噪方法是利用信号和噪声在不同域的差异,将干扰波与有效波的差异最大化,分别在炮域、共偏移距域,运用拟三维FXY滤波、线性干扰消除等技术提高地震资料的信噪比(图5-4)。

图5-4 多域地震资料信噪比对比图

5.高精度速度分析技术

在常规数据处理方法中,速度分析普遍采用相干性度量法。这种方法没有考虑相近或干涉同相轴、剩余静校、非双曲型时差等有关的噪声以及其他非随机噪声的影响,因此影响了时间和速度分辨率。本次处理采用的是最新研制的相位相关统计方法,这种方法的优点是在时间和速度分辨率上比常规方法更高更可靠,更有助于对小幅度构造的分析和解释。

时间分辨率的检测:合成CDP道集中,两组同相轴中间隔均为30ms,从图5-5中可以看出,相位相关统计速度谱与常规速度谱相比,时间分辨率明显提高。

速度分辨率的检测:使用同一时间而采用不同速度的两个同相轴,速度差由大到小不断变化,观察速度谱中能量团,直至分不开为止。从图5-6中可以看到,当常规速度谱中能量团已分不清楚时,使用本方法,同一深度的两个能量团可清楚地分开,特别在深部,效果更为明显。

图5-5 两种速度谱分辨率对比

图5-6 两种速度谱能量团对比

6.叠前深度偏移(PSDM)成像技术

崎岖海底最核心的问题就是:由于存在崎岖不平的海底,横跨海底界面的侧向速度强烈变化,使得地震射线路径复杂,时距曲线为非双曲线,常规处理方法中的CMP道集不再是共反射点道集,叠加剖面不再是零偏移距剖面,造成下伏地层的成像差及构造形态的严重畸变。陈礼、葛勇等人利用理论模型讨论了用常规时间偏移、叠后深度偏移及叠前深度偏移技术解决深水崎岖海底地震成像问题的有效性。通过对深水模型数据各种偏移结果的对比分析认为,常规时间偏移和叠后深度偏移均不能解决崎岖海底地区地震成像问题,而叠前深度偏移是解决这一问题的有效方法。

叠前深度偏移技术通常用来实现复杂构造准确偏移成像,解决复杂地质问题。对于地下深度成像而言,最棘手的问题不是偏移方法,而是地下速度模型的建立。深度偏移是一个迭代过程,是一个不断建立模型、试验模型、运行偏移,根据成像修正模型的反复过程。叠前深度偏移对地下形态基本不作假设,速度深度模型直接用叠前资料建立,地下速度纵横向均可变化,CMP道集考虑非双曲效应。由此得到的数据体不但能提高信噪比、使空间归位正确,同时还能直接得到地质上合理的深度成像数据体,供地质解释之用,很显然是解决崎岖海底造成构造畸变的一个较好的办法。图5-7为过LW3-1构造的叠前时间偏移和叠前深度偏移的剖面,对比可以看出,时间偏移剖面LW3-1构造区周边构造倾角大,下伏地层结构成像精度较低,结构不清楚,构造形态严重畸变,而叠前深度偏移在纵横向分辨率、振幅的相对保持、对复杂构造的能量聚焦以及构造形态方面都获得比较明显的改善,能够满足地质解释的要求。

图5-7 三维叠前时间偏移剖面和叠前深度偏移剖面对比图

经过多次试验和论证,我们选择崎岖海底发育并可能有火山岩发育的白云6-1构造区资料进行叠前深度偏移试验。

图5-8(上)为04EC2458深度偏移成果剖面,图5-8(下)为该测线最终偏移时间剖面,从深度和时间剖面的对比来看,深度剖面保持了原有的分辨率和信噪比,剖面面貌比较自然,大部分地区海底崎岖影响基本消除,随海底崎岖起伏的同相轴基本上被拉平,反映了地下真实的构造形态,但局部地区(图5-8左部)仍然还存在上下地震反射起伏共鸣的现象,说明海底崎岖的影响仍未消除,分析这些局部海底崎岖影响仍未消除的情况,可以发现,这些不理想的情况的上方海底为一些较浅的海沟,仔细观察,可以发现这些较浅的海沟里充填了较厚的沉积物(图5-9),通过速度分析,发现这些沉积物层速度很低,大约1670m/s,比1500m/s稍高,但比起隆起上的地层速度1820m/s要低得多,如此低速的沉积物可能是一些晚期沉积的淤泥。

图5-8 04EC2458叠前深度偏移剖面和最终时间偏移剖面对比

图5-9 海底崎岖速度分析

通过计算,如果海底有一个400ms的海沟,可能造成下伏地震相位的下拉达75ms,而如果海沟之中有充填物250ms,则可造成下伏地震相位下拉达25ms,由此可见,下伏地层构造形态的畸变不仅是海底崎岖本身的影响,海沟中充填物的厚度也有相当的影响,而在这次的叠前深度偏移中没有考虑这个因素,所以在一些局部地方尚需要进一步改善。

7.叠后LIFT提高信噪比处理技术

由于本工区构造复杂,浅、中、深层信噪比和频率成分差异很大,我们采用LIFT去噪处理技术,有效提高处理成果的质量(图5-10)。

图5-10 LIFT技术信噪比对比图

Ⅳ 有关地震资料处理

地震波是如何传播的?下面的图形形象地给出了说明。以加利福尼亚北岭地震为例,1994年1月17日,震级6.8北岭是位于洛杉矶以北不远的圣费尔南多谷中的一个社区,在1994年1月17日当地时间4:31 AM受到大地震的冲击。约60人死亡,财产损失估计为300亿美元。因为地震发生那天是马丁.路德.金纪念日,所以当天早晨高速公路上的人并不象通常的星期一早晨那样多。这个事实很可能使死亡人数减少了。工程师对这次地震的影响既感到高兴,有感到吃惊。在1971年的圣费尔南多地震(在这次地震的震中以北不远处)后,这个地区公路上的很多桥梁加固了。这些加固过的桥梁没有一座坍塌。然而,几座已计划要进行加固的桥梁坍塌了。很多钢结构建筑物在接缝处断裂了。
当地震发生时,地震波在地球内部和地表传播。使时间加速,你能够看到这一切的发生。右图表明了面波是如何从地震发生处向外传播的。切面图显示的是体波在地球内部传播,在遇到内部障碍物时发生改变。地表的黄色条标示的是面波的传播范围。

这个图形显示了是从全球的地震台站收集
来的实际地震图。当各震相(P波,S波等)到
达地球表面和切面图上的某一台站时,你可看
到地震波形的变化。在P波和S波之后的是面波。它们是地震中造成主要破坏的地震波。有两种类型的面波:一种是勒夫波,物质粒子在沿与波传播方向垂直的方向作水平的前后运动,另一种是瑞利波中,物质粒子沿与波传播方向同方向作垂直的前后运动。地震学家利用这些地震波的到达时间来测定地球的内部结构。

地震的产生和类型

--------------------------------------------------------------------------------

地震分为天然地震和人工地震两大类。天然地震主要是构造地震,它是由于地下深处岩石破裂、错动把长期积累起来的能量急剧释放出来,以地震波的形式向四面八方传播出去,到地面引起的房摇地动。构造地震约占地震总数的90%以上。其次是由火山喷发引起的地震,称为火山地震,约占地震总数的7%。此外,某些特殊情况下了也会产生地震,如岩洞崩塌(陷落地震)、大陨石冲击地面(陨石冲击地震)等。

人工地震是由人为活动引起的地震。如工业爆破、地下核爆炸造成的振动;在深井中进行高压注水以及大水库蓄水后增加了地壳的压力,有时也会诱发地震。

地震波发源的地方,叫作震源。震源在地面上的垂直投影,叫作震中。震中到震源的深度叫作震源深度。通常将震源深度小于70公里的叫浅源地震,深度在70-300公里的叫中源地震,深度大于300公里的叫深源地震。破坏性地震一般是浅源地震。如1976年的唐山地震的震源深度为12公里。

地震带

--------------------------------------------------------------------------------

地震主要分布在环太平洋带,阿尔比斯—喜马拉雅带,大西洋中脊和印度洋中脊上。总的来说,地震主要发生在洋脊和裂谷、海沟、转换断层和大陆内部的古古板块边缘等构造活动带。

震源:是地球内发生地震的地方。
震源深度:震源垂直向上到地表的距离是震源深度。我们把地震发生在60公里以内的称为浅源地震;60-300公里为中源地震;300公里以上为深源地震。目前有记录的最深震源达720公里。
震中:震源上方正对着的地面称为震中。震中及其附近的地方称为震中区,也称极震区。震中到地面上任一点的距离叫震中距离(简称震中距)。震中距在100公里以内的称为地方震;在1000公里以内称为近震;大于1000公里称为远震。
地震波:地震时,在地球内部出现的弹性波叫作地震波。这就像把石子投入水中,水波会向四周一圈一圈地扩散一样。
地震波主要包含纵波和横波。振动方向与传播方向一致的波为纵波(P波)。来自地下的纵波引起地面上下颠簸振动。振动方向与传播方向垂直的波为横波(S波)。来自地下的横波能引起地面的水平晃动。横波是地震时造成建筑物破坏的主要原因。
由于纵波在地球内部传播速度大于横波,所以地震时,纵波总是先到达地表,而横波总落后一步。这样,发生较大的近震时,一般人们先感到上下颠簸,过数秒到十几秒后才感到有很强的水平晃动。这一点非常重要,因为纵波给我们一个警告,告诉我们造成建筑物破坏的横波马上要到了,快点作出防备。
1976年唐山大地震时,一位住在楼房里的干部突然被地震惊醒。由于这位干部平时懂点地震知识,所以当他感到地震颠簸时,迅速钻到桌子底下,五、六秒种后,房顶塌落。直到中午,他被救出后,深深感到要不是自己果断钻到桌子底下,早就没命了。他说是地震知识救了他的命。
地震学的伟大成就之一是,人们完全了解了地震波被激发的机制。在上个世纪末,一位地震学者评述地震时写道:“地震的原因还仍隐匿于朦胧之中,可能是永恒之谜,因为这些强烈震动发生的处所,远距人类观察领域之下。”许多与他同时代的人认为,火山作用是地震的首要原因,而另一些人倾向于地震源于高大山脉造成的巨大重力差。

在20世纪初地震台网建立之后,完成了地震活动的全球性监测,人们发现许多大地震发生之处远离火山和山脉。越来越多的地质学家把破坏性地震的野外考察作为他们的任务。地面断裂之大常常使他们震惊,这些断层可以从地形沿线状系统变形而被识别。上世纪末科学家已经清楚地认识,一般的地震与造成地球表层广泛变形的构造过程密切相关,这些变形也创造了山脉、裂谷、洋脊和海沟。地质学家推测,地表岩石的大规模迅速错动是强烈地动的原因。他们的推断很快发展成信心十足的论述,大多数地震发生的机制已经被发现。

今天认为天然浅震几乎都有同样成因。地球深成构造力造成地球外层大规模变形是地震的根源。沿地质断裂的突然滑移则是地震波能量辐射的直接原因。

4.1 地 质 断 层

在实验室里岩石受压能使之以不同方式“破裂”和“破坏”。在有的突发破裂中,断裂把岩石切开,两侧岩石相对滑动,多条裂纹把岩石裂成碎块。如果岩石破碎的碎块能再拼合起来,这种破坏类型称之为脆性破坏。另外一种岩石破坏中,标本的两侧不突然滑移,而是缓慢地碾磨,沿着一个倾斜断面仍粘合在一起。这种岩石的破坏不能像脆性破坏那样快速释放储存的弹性能量。

在自然界,大规模的破裂面被称为地质断层。像在实验室中见到的那样,一条断层的两侧可以逐渐地并难以察觉地互相滑过;也可以突然破裂,以地震形式释放能量。在后一情况下,断裂两侧向相反方向错动,以致一度横过断裂排列的岩石会发生变位。许多断裂非常长,有的可在地表追踪几千米。

断裂展示的特性形形色色。它们可能是仅具有很小的可见位错的清晰的裂面(图4.1),

也可能是岩石的扩展破碎带,几十或几百米宽,这是沿断裂带不时重复运动的结果。断层一旦形成,它往往成为持续应力作用下继续变位的场所,这可由断面附近的碎裂岩泥质物所证实,断面上的大多数岩体含有曾发生岩石变位造成的丰富的破裂。断裂带中的岩石可在若干地震过程中被非常细地挫碎和剪切,使它变成一种塑性粘土物质,叫断层泥。这种物质强度小,以致弹性能量不能像在较深的脆弹性岩石中那样存储。

断层曾按它们的几何学及相对滑移方向分类。如图4.2所示,断层在三维坐标中的定位由两个角度给出:第一是断层的倾向,即断面与水平面之间形成的角度。第二是断层的走向,即出露于地表的断层线相对于正北方向的角度。

图4.1 犹他州喀那布附近的切过岩层的小而清晰的正断层

图4.2 地质断层的类型

斜断层(图右边)都具有水平运动(走滑断裂)和垂直运动(正断层和逆断层)两种断裂的特征

断裂可按其沿倾向和沿走向的运动方位分类。走滑断裂,有时也叫横推断层,能引起断层两侧彼此相对水平滑移。岩石平行于走向相对平行地移动,如果当我们站在这种断裂的一侧,看另一侧的运动是从左向右,这种断层运动叫右旋走滑。同样地能确定左旋走滑断层。

断层的运动可完全沿倾向发生,称为倾滑断裂。这时断裂一侧相对另一侧上下运动,其断裂运动基本平行于断层倾向,岩石在垂向发生位错,有时造成一个小而可见的岩石墙面,称之为断层崖。这类断层可划分为两个亚类:一个是正断层,是在倾滑断裂中倾斜断面上边的岩石相对断裂下边的岩石向下运动;相反地,逆断层是倾斜断面上边的岩石向上运动。逆冲断层是断层倾角很小的逆断层。断层很少是纯走滑或倾滑的,通常它们具有水平和垂向运动分量。这种断裂名为斜向断裂。有些断裂面没有能从基岩穿透上覆土壤,因为近地表的土壤吸收了差异滑移。这时只能通过挖探槽或切开隐伏断崖才能探测出断层。

4.2 其他来源的地震动

大多数破坏性地震——诸如1906年旧金山地震、1988年的亚美尼亚地震和1992年加利福尼亚兰德斯地震,都是因断层岩石的突然破裂而发生的。虽然通常谈地震指的就是这些所谓的构造地震,但强烈的地面震动也可能是许多其他来源的结果。

第二种熟知的地震类型是伴随火山的喷发而发生的地震。许多人,像早期希腊哲学家那样,想象地震是与火山活动联系的。的确,在世界许多地区地震与火山相伴发生,令人印象深刻。现在我们知道,虽然火山喷发和地震都是岩石中构造力作用的结果,但他们并不一定同时发生。今天我们称与火山活动相关发生的地震为火山地震。

在大火山地震中,从地震波确定的震源机制可能与构造地震是一样的。靠近喷发的火山,岩石由于岩浆的积累和运动而变形,弹性应变能在岩石中积累起来。这些应变导致的断层破裂就像构造地震一样,但与火山并无直接关系。然而,由于地下火山通道中喷发岩浆的快速运动以及超热蒸汽和气体的激发,可使周围岩石发生颤动,称之为火山震颤。

另外一种类型的地震为,当地下洞穴或矿坑崩陷时造成一个小的“塌陷”地震。这种现象是通常所说的矿爆的变种,矿爆时采矿场诱发应力造成大量岩石爆裂飞出采矿面,产生地震波。

1974年4月23日在秘鲁沿曼塔罗河一个壮观的滑坡造成相当4.5级地震的地震波。大约1.6立方千米体积的岩石滑动了7千米,致使约450人死亡。这次滑坡并非由邻近的构造地震驱动,而是由于山体的失稳。部分重力位能在土壤和岩石的快速向下运动时转化成地震波,并被上百千米以外的地震台清楚地记录到。一台80千米以外的地震仪记录到3分钟的地动。这个摇动持续时间是与地滑的速度和范围相一致的,它在观察到的滑移7千米距离内以每小时约140千米的速度运行。

因为地震通常造成地滑,有时规模很大,很难分开原因和效果。近代史中最大地滑可能发生于1911年俄国帕米尔山中的乌索。伽里津(Galitzin),一位现代地震学的先驱,在圣彼得堡附近他的地震仪上记录到了乌索地滑造成的地震波,因此地滑发射出来的地震波传播了3 000千米。他开始以为记录了一个正常的构造地震,直到1915年派出一支调查队去研究乌索地滑,才发现这次地滑席卷了2.5立方千米岩石!

图4.3 新西兰库克山1991年12月15日1 400万立方米岩石和冰雪崩塌下来之后的

情景(a)和75千米以外记录到的库克山雪崩地震图,相当于一次3.9级地震(b)

很大的陨石与大气或地球表面碰撞造成碰撞地震是一种稀少的情况。一个神奇的例子是通古斯陨石于1908年6月30日在西伯利亚一个偏僻地区进入地球大气层,在大气层快速减缓时的应力和热作用下,陨石在地球表面以上不到10千米的高度爆炸,夷平了大面积的森林。俄国和欧洲的许多地震台,有的远在5 000千米之外,都记录到了地震波。开始人们还以为是一次大的构造地震。

有一些在流体注入深井或大型水库蓄水后诱发地震的记录,虽然其机制仍被认为是由断层破裂而释放应变能。这些事例提出一个问题:在什么程度下,一口井或水库中的水会诱发那些否则要许多年后才会发生的地震?

一个良好记载的案例是麦德湖事件,它于1935年水库蓄水之后发生在科罗拉多河上胡佛水坝。在湖形成之前该区无地震活动的历史记录,但蓄水后小地震频发。当水库充水之后建立了地方性地震台,记录表明,发震次数与水库的蓄水量变化有相当密切的对应关系。

对水库水深超过100米和1立方千米体积的大型水库,这种效应最明显。然而,大多数这种大水库是无震的,世界上26个最大水库仅有5个发生无可置疑的诱发地震,包括赞比亚的喀瑞巴水坝和埃及的阿斯旺高坝。最合理的解释可能是,井或水库附近已经受构造力而产生应变,以致断裂已经几乎准备滑动,水头增加了压力,从而增加了岩石中的应力并驱动滑移;水也可使岩石弱化,降低岩石强度。

最后,人类爆炸化学炸药和核装置引起爆发地震。在近地表爆炸中,破碎地区产生的地震波向所有方向传播,当初至P波到达地面时地面会外隆,如果能量足够大,会将岩土四抛,如同采石场那样。

当然,人类和野兽有时也造成地震,尽管一般极小,例如机械地敲击地面。

4.3 弹性能的缓慢积累

让我们对构造地震成因作进一步的讨论。地球深部的作用力使地震活动区岩石产生变形,随时间增加变形渐渐变大。这种变形在很大程度上,起码在大约千年尺度上,是弹性变形。所谓弹性变形,是指加力时岩石产生体积和形状变化,当力移去时将弹回到它们的原状,就像受挤的橡皮球。这种弹性岩石运动能通过精密的系统的大地测量加以探测,以区分出弹性和非弹性(即不可逆的)变形。

为了达到这种目的,有3种主要大地测量方法。两种确定水平运动大小。第一类,用小望远镜测量地面上标志间的角度,这个过程叫三角测量。第二类叫三边测量,测量地面标志之间的距离。在现代三边测量技术中,光(有时是激光束)被从一定距离的制高点的镜子反射,用一种光电测距仪测量光的双向路径往返所用的时间(图4.4)。在路径很长时,光速随大气状况而变化。因此,在精密测量时用飞机或直升机沿视线飞行,并测量空气温度和压力以便能够校正。这些测量精度可达在20千米距离准确到约1.0厘米。

图4.4 在加利福尼亚帕克费尔德用于进行大地测量的激光束对着远处的镜子

第三类测量是通过野外建立水准测线测定垂向运动的大小。这种水准测量简单地测定在地面上不同地点布设的基准点的高程。重复测量可揭示各次测量间的变化。国家测网是在国土固定位置上设置国家基准测桩。有可能的话,水准线将延至大陆边缘,以便用平均海平面作为确定陆地高程绝对变化的参照点。近年来,同步卫星也被用来作为已知参考点,利用地球表面固定点发射无线电波至卫星的走时测距。

不同的测量方法表明,在地震活动区,诸如加利福尼亚和日本,地面水平和垂直运动都达到了可观测到的量级。它们还表明在大陆的稳定区,诸如加拿大和澳大利亚的古老地块,很少发生变化,至少在最近的过去。与地震有关的区域变形测量的最重要的结果可能来自加利福尼亚。在那里他们早自1850年开始并于1906年旧金山地震后定期进行测量。其成果在现代地震发生的理论中起着关键作用。近十余年来沿圣安德烈斯断裂系的测量已有进一步改进,着眼于地震预报。测量人员用光学和激光束光电测距仪,测量了圣安德烈斯断裂两侧山顶上基准点之间的距离。应变的趋势变化特别清楚,测量表明断层存在右旋变形,而未横过主要断裂带的测线长度变化则很小。

4.4 弹性回跳原理

在科学发现中常常不是记住对一事件的首次描述或某个假说的首次提出,而是记住那些使科学界信服确实发现了一些新东西的事件。现今广为接受的地震发生的断裂破裂机制的物理学原理,是由对1906年圣安德烈斯地震令人信服的研究确立的。1906年以前跨被圣安德烈斯断裂切过的区域作了两组三角测量,一组在1851~1865年,另一组在1874~1892年。美国工程师里德(Reid)注意到,到1906年的50年期间断裂对面的远点移动了3.2米,西侧向北北东方向运动。当这些测量数据与地震后测量的第三组数据比较时,发现地震前和地震后,平行于圣安德烈斯断裂的破裂,都发生了明显的水平剪切(见第8章图8.4)。

自里德的工作之后,地震学界普遍认为,天然地震是地球上部沿一地质断裂发生突然滑动而产生的。这滑移沿断面扩展,这种滑移破裂传播的速度小于周围岩石中的地震剪切波波速。存储的弹性应变能使断裂两侧岩石回跳到大致未应变的位置。这样,至少在大多数情况下,变形的区域越长、越宽,释放的能量就越多,构造地震的震级也将越大。图4.5给出地震矩与断层长度的关系。

图4.5 板内大地震的地震矩与断层破裂带长度的关系

如图4.6所示,那些造成1906年地震的力画在图解中。想象这一图解是垂直地横过圣安德烈斯断裂的一排篱笆的鸟瞰图。该篱笆垂直穿过该断层,在两侧延伸许多米。用空箭头表示的构造力作用使弹性岩石应变。当它们缓慢地作功时,该线(篱笆)弯曲了,左侧相对右侧错动。这种应变作用不能无限地持续,早晚那些软弱岩石,或那些位于最大应变点的岩石要破坏。这一破裂后将接着发生弹回,或在破裂的两侧回跳。这样在图4.6中断裂两侧的岩石中的D回跳到D1和D2。图4.7示出1906年地震断层破裂之后横过断层的篱笆被错动的情况。

图4.6 跨断层的篱笆当断裂弹性回跳时造成的结果

(a)构造力作用下横过断层的篱笆发生弯曲, A点和B点向相反方向移动;

(b)在D点发生破裂,在断裂两侧的应变岩石弹回到D1和D2

图4.7 在海滨地区跨圣安德烈斯断裂的篱笆在1906年旧金山地震时

错动了2.6米,远处的土地向右移动

自从1906年地震之后,肯定了弹性回跳作为构造地震的直接原因。像钟表的发条上得越紧一样,岩石的弹性应变越大,存储越大的能量,当断裂破裂时,储存的弹性能迅速释放,部分地成为热,部分地成为弹性波,这些波就构成地震。

岩石的垂向应变也很常见。在这种情况下,弹性回跳沿倾斜断面发生,引起地水平线沿垂向垮落并形成断层崖。大地震造成的断层崖可达好几米高,有时沿断裂走向延伸几十或几百千米。

岩石力学实验室里的试验曾阐明了地震前期应变在地球岩石中的变化。在这些实验中,将水饱和的岩石试样在高温下的流体介质中压缩。这种研究指示在局部构造力作用下地壳缓慢应变,在构造断裂邻近造成岩石中微裂隙的集中。水缓慢地扩散并充填在岩石的裂缝和孔隙之中。由于微裂隙的发展,沿断裂的高度应变区的体积增加,这个膨胀过程进一步使断裂带弱化。同时,在裂隙中的水降低了岩石的约束力,并使横过潜在断层面的摩擦力降低了,容许岩石松动,以致最终沿一个主要断裂面滑动。按这种方式变形的断裂产生弹性回跳并传播扩展。

地震的前震和余震也能通过研究主滑动附近的裂缝发育过程而得到理解。前震是沿断裂的应变和破裂物质中的微细破裂结果,而那时主断裂并没有发展,因为物理条件尚未成熟。前震中的有限滑动稍微改变了力的格局。水的运动和微裂隙的分布,终于使一个更大破裂开始了,造成主震。沿主破裂岩块的抛掷和严重摇动及局部生热,导致沿断裂的物理条件与主震以前相比有很大不同。其结果是附加的小断裂发生了,造成余震。之后,该区的应变能逐渐降低,像一个没劲的钟表,可能在许多月之后恢复稳定。

4.5 40年中美国的最大地震

我们设想因为强震发生缓解了一条断层上的应变,在一个地区一旦余震结束将跟随而来的是平静。但主断裂往往仅是威胁一地区的复杂断裂网格中的一条。一条断裂上应变能的灾变性释放,可能增加相邻断裂的压力。近几年来袭击美国本土的最大地震表明,一个大地震对一个地区的地震活动性及地震灾害的影响是多么难以预测。

1992年6月28日星期天上午4点58分,一个强震袭击了加州荒僻的莫哈维沙漠中的兰德斯城镇(见图4.10)。其主震的面波震级为7.5。事后发现弹性回跳的大主干断裂,正是由于它的错动在南加州产生强烈摇动,使远在科罗拉多州的丹佛都有感。

震中位于兰德斯镇和尤喀河谷之间,大约在圣安德烈斯断裂带东北30千米。这个人口不多的居民点遭受了高强度的晃动。戈布罗哥(Gobrogge)先生描述了在尤喀河谷中他的保龄球道边墙被破坏时说:“那太可怕了,确实可怕,它不肯平静下来,一直持续地摇摆,从未停止。”这个地震,官方名之为兰德斯地震,与经常提到的1952年克恩地震发生在同一地区。然而因为它位于沙漠,仅有1人死亡和5人重伤。地震摧毁超过77家,有4 300户受到破坏,估计财产损失约5 000万美元。

在以后的日子里,成百的地震学家和地质学家来收集资料,目睹了断裂的明显证据。壮观的右行地表错动形成一系列走滑断层,排列成“雁列”状,每一断裂与前面另一断裂首尾相邻,坐落在前方右侧或左侧,像一个系列台阶。这一系列断层连成的主断裂已填绘在加州地质图上,但因为它们在其尾端分离达10千米,曾被认为是单独的断层。作为一条连续的深断裂的段落,个别的断裂被认为在12 000年前滑移过,但自那以后没有活动过。据此,没有设想会发生一个7.5级,囊括全部80千米的断层错动的地震。

沿断裂测量的地表滑移在兰德斯附近达2米,如图4.8和图4.9所示,沿破裂西北部错动大致5.5米。还有令人惊奇的1米高的地震陡崖,出现在沿主断裂弯转的部分段落。

图4.8 莫哈维沙漠中沿埃莫森断层256千米宽的地区的一对卫星影像

该断层是兰德斯地震过程中错断的几条断裂之一。左边的影像拍摄于1991年7月27日,

地震之前11个月;右边的影像,刚好于地震后27天拍摄。地震过程中断裂造成的地裂

缝清楚可见,从左上角延伸至右下角。在这一位置横过断裂的位移约为4米

图4.9 埃莫森断裂崖的新鲜断面显示1992年兰德斯地震后的滑移(称之为擦痕)

随着兰德斯地震之后发生了最不寻常的地震连锁反应。主震之后沿滑动的断层连续发生一系列余震(图4.10)。作为规律,在大的浅源地震之后,随后的日子里地震活动在更大的地区内会突然戏剧性地增加。主震之后3个小时又在以大熊湖附近为中心处发生了强震(MS=6.5),地面被再次震颤。这次震动是距第一次断裂源约45千米西方的另一条断裂的滑移产生的。应用计算模拟考察区域断裂系的应力变化,其结果表明,兰德斯地震的断裂滑动造成了断裂上某些部位应力增加,大熊湖地震就是因此而发生的。计算还表明,兰德斯地震可能增强了南圣安德烈斯断层上的应力,加强了走滑剪切的趋势,同时降低了圣安德烈斯四周顶住周边的压力,该种力是无形的连续的。这些作用集中在一起,可能增加了本区未来发生大地震的机率。

图4.10 南加州兰德斯地震后25日内的余震和断层分布图

主震以星号表示,颜色深浅的变化表明1979~1992年间区域地震引起的应力变化,

圣安德烈斯断层卡洪山口以东应力增加,以西应力减小

紧接着兰德斯主震之后的24小时内,在距震中600千米范围内地区台网测到了11个震级大于3.4的地震。按照加州和内华达地区地震发生的正常概率,这种两个大事件连续发生的机率仅为十亿分之一。这种同时发震在地质历史中是极少出现的!因此我们推测,是兰德斯地震引起了这个地震活动高潮,它直接在岩石中增加了弹性应变,或由它的地震波通过各单个断裂而在它们上面引起变化应力而造成地震活动高潮。

最难理解的是沿内华达山脉东侧,从欧文谷以南向北到长谷火山口,距兰德斯400千米的小地震发生频度的显著增加。北部距主破裂800千米的莫娜盆地、拉森山和最北头的北加州沙斯塔山,也都出现背景地震活动的显著增加。

许多加速度计被兰德斯地震触发了,它们绘出强摇摆的信号。围绕断裂源的许多地点观测表明,兰德斯地震的震中破裂可能是由南开始向北传播。在断裂北端地面变动比断裂南端强烈得多。听众可以体验同样效应,像扩音器移近时声强提高一样,学术名词叫定向聚焦,描述由波源的运动引起能量在一个方向上集中。因为破裂方向不同,其运动可比平均值更大或更小,因此地面运动强度取决于破裂的方向。

4.6 地 震 矩

由受构造应力影响使断裂面突然滑移的力学模型,推导出地震整体大小的最有用的量度。这个量度,在第3章提到过,叫地震矩。它是1966年美国地震学家安艺(Aki)提出的。现在受到地震学家欢迎,因为它与断裂破裂过程的物理实质直接联系。根据它能推断活动断裂带的地质特性。

矩的力学概念可用一简单实验加以描述。把双手放在重的方桌两边,在水平方向上一只手推、另一只手拉。两只手分开得越宽,桌子越容易转动。换句话说,桌子旋转需要的力是随两臂的杠杆作用的增加而减少的。这两个大小相同、方向相反的力称为力偶。这个力偶的大小叫矩,其量值由两个力之一的值和它们之间的距离相乘而得到。

这个概念可以引伸到造成地质断层滑动的力的系统。在这种情况中的.

Ⅳ 地震资料有什么特殊的处理方法

地震资料特殊处理是相对常规处理而言的,它是更高一层的处理。为满足解释工作的特殊需要,需要进行特殊处理。特殊需要是指经过初步解释以后,为了进一步搞清可能含有油气地层的细微结构和地层的一些特性,如复杂的小断块,储藏油气地层的特性以及预测油、气、水的分布等等,需要从地震资料中提取有关的信息和依据。为这种特殊需要所做的进一步处理叫做特殊处理。

特殊处理的一种成果—反映地层孔隙平面变化的成果中国从20世纪70年代初期开始研究以亮点技术为主要内容的特殊处理技术。所谓亮点,简单地讲,就是由于地下油气藏的存在,在地震剖面上出现的引起振动幅度增强的“点”。这个点附近的振幅显得“又粗又黑”,周围比较弱,可见亮点与油气有很大关系。1972年,国外油气公司利用亮点技术成功的预测出墨西哥湾的两处天然气田,中国于1974年应用亮点技术在渤海湾已知气田上得到了很好的验证。

20世纪80年代开始研究以储油气地层为主要内容的特殊处理。通过特殊处理可以为地层的岩石性质、地层的孔隙发育情况等物理性质以及是否存在油气等提供更多的资料。

20世纪90年代开始发展了三维地震资料的特殊处理技术,如应用三维特殊处理的资料进行油藏描述、储量估算等,从而使三维地震勘探解决地质及油气问题的能力更强,效果更明显。

地震反演问题是最近几年特殊处理中一项重要的处理内容。它可以把地震剖面转换成分辨率更高,反映地层性质更为直观的一些剖面。这样有利于地震资料与测井资料连接对比,更有利于地层性质变化规律的研究。地震反演技术已成为研究储层的一项关键性技术。

Ⅵ 地震资料的预处理

1.叠前 AVO属性处理

(1)AVO速度调整和层速度场的建立

除了振幅处理不当会造成 AVO 分析陷阱外,如果速度分析处理不当也可能造成技术陷阱,同时也会影响到资料的品质和横向分辨率。虽然常规处理中已经产生了一个比较准确的速度场,但这个速度场由于考虑到多方面因素的影响,并不能完全适应AVO属性处理。

因此,在AVO 速度分析中,首先对信噪比低的剖面段继续采用细致的常速扫描与谱点加密的方法,保证速度拾取的精确程度 (图5-17),从而获得精度较高的叠加速度场。由于本区地层为倾斜地层,因此叠加速度场与均方根速度场之间存在以下关系:

VRMS=VSTK×cosθ

图5-17 精细速度调整

式中:VRMS为均方根 速度;VSTK为 叠 加 速度;θ为地层倾角。

根据实际资料,本工区地层倾角在10°~15°之间,cosθ约在0.97~0.99之间,因此我们可以利用以上的公式将叠加速度场近似转换为均方根速度场。

对叠加速度场进行平滑 (图5-18),然后将平滑后的叠加速度场转化为层速度,结合地质层位解释对层速度场进行调整 (图5-19),最后利用该速度场完成初次AVO 处理并对处理结果进行分析,根据实际处理效果情况再次调整速度场,完成最终 AVO速度场的建立 (图5-20)。

图5-18 叠加速度场

图5-19 均方根速度场转化的层速度场

图5-20 排2井三维 AVO速度场建立流程

(2)AVO入射角度的试算与选择

入射角=tan-1(offset/2 H)

式中:offset代表偏移距;H 代表目的层深度。

从共 中 心 点 面 元 道 集 内 的 高 差 变 化 情 况 看, 过 排 2 井 道 集 (x:313980,y:4982130)高程在 289~292.2m 之间,最 大 高 差 为 3.2m;工 区 南 部 农 田 区 道 集 (x:309000,y:4974410)高程在297.8~302.5m之间,最大高差为4.7m;工区南部水库区道集 (x:309000,y:4963400)高程在319.4~306.4m之间,最大高差为13m。在完成近地表校正后,共中心点面元道集内的高差对 AVO 入射角计算的影响很小,可忽略不计。

排2井三维地层埋深差异较大,同一地层最大埋深差达1500m,因此取500~2750m为目的层深度范围。根据现有资料,排2井油层深度为1014m,经分析,该层对应地震资料最大偏移距为1070m,根据 AVO 入射角计算公式,满足 AVO 分析的最大入射角为43°;排2井石炭系深度为1374m,经分析该层对应地震资料最大偏移距为1400m,根据AVO入射角计算公式,满足 AVO分析的最大入射角为45°;三维工区内石炭系最大地层埋深为2750m,按最大偏移距2870m 计算,满足 AVO分析的最大入射角为46°。综合分析,试处理中确定的最大入射角为45°。

为了保证 AVO 属性分析的效果,对 AVO 属性分析的角度进行试算,分别试算了0°~30°、0°~35°、0°~40°、0°~45°(图5-21~图5-24)。最终 确 定 0°~35°作 为 本 区 AVO属性分析试处理的入射角。

图5-21 入射角0°~45°碳氢检测剖面

图5-22 入射角0°~40°碳氢检测剖面

图5-23 入射角0°~35°碳氢检测剖面

图5-24 入射角0°~30°碳氢检测剖面

(3)AVO属性体处理

应用分选出的0°~35°角度限制道集,结合全区层速度场,利用Shuey近似公式进行AVO属性体的叠加处理,得到 AVO属性体。

另外也对另一种近似方程——Richards方程,抽取过排2井的纵线进行了试处理,并取得了一定的效果 (图5-25,图5-26)。

图5-25 过排2井(排8井)纵线λ剖面

图5-26 过排2井(排8井)纵线μ剖面

(4)P波数据体的后续处理

为了满足后续反演处理和综合分析的要求,还要对P波数据体进行后续的处理工作,主要是应用 Omega处理系统的STOLT偏移方法对 P波数据体进行叠后偏移处理;应用零相位反褶积、蓝色滤波提高P波数据体的分辨率;应用三维 RNA提高P波数据体的信噪比 (图5-27,图5-28)。

图5-27 P波偏移剖面

图5-28 提频去噪后P波偏移剖面

对于P波属性数据体和成果数据体,尤其是过井线,进行了详细的对比分析,认为P波数据体与成果数据体基本相当,从合成记录对比 (图5-29,图5-30)上看,两者的频率、相位、能量都一致,同样都可以很好地反映地质现象,但在细节方面,P波剖面振幅的强弱关系反映更明显,保幅性更好 (图5-31~图5-46)。

图5-29 过排2井成果剖面标定图

图5-30 过排2井P波剖面标定图

图5-31 过排2井P波剖面

图5-32 过排2井纵线成果剖面

图5-33 过排8井P波剖面

图5-34 过排8井纵线成果剖面

(5)AVO属性体的归位处理

由于 AVO属性处理是直接应用叠前道集进行属性体的叠加,因此 AVO 属性体的归位一直是一个难题。

图5-35 过排201井纵线成果剖面

图5-36 过排201井P波剖面

图5-37 过排208井纵线成果剖面

图5-38 过排208井P波剖面

图5-39 过排9井纵线成果剖面

图5-40 过排9井P波剖面

图5-41 过排12井纵线成果剖面

图5-42 过排12井P波剖面

图5-43 过排16井纵线成果剖面

图5-44 过排16井P波剖面

图5-45 过排17井纵线成果剖面

图5-46 过排17井P波剖面

在本次处理中,把P波数据体和梯度 G 数据体分别进行偏移,再将偏移后的 P、G数据体进行相应运算,获得偏移归位后的碳氢检测、拟波松比等属性体,彻底解决了这个难题,并取得了很好的效果 (图5-47,图5-48)。

图5-47 偏移前过排2井-排8井纵线碳氢检测剖面

图5-48 偏移归位后过排2井-排8井纵线碳氢检测剖面

(6)AVO属性处理效果分析

AVO叠前属性处理取得了较好的处理效果。在过排2井附近的道集上 (图5-49)可以看到明显的 AVO正异常现象。

从过排2井 (排8井)P波剖面、碳氢检测剖面、拟泊松比剖面上可以看到,油井与负相位砂体吻合很好 (图5-50~图2-52)。

图5-49 过排2井道集 AVO正异常显示

图5-50 过排2井-排8井纵线P波剖面

图5-51 过排2井-排8井纵线碳氢检测剖面

图5-52 过排2井-排8井纵线拟泊松比剖面

而过排201井 (排204井)、排203井、排208井P波剖面、碳氢检测剖面上,没有明显的反映 (图5-53~图5-58)。

图5-53 过排201井-排204井纵线P波剖面

图5-54 过排201井-排204井纵线碳氢检测剖面

图5-55 过排203井纵线P波剖面

图5-56 过排203井纵线碳氢检测剖面

图5-57 过排208井纵线P波剖面

图5-58 过排208井纵线碳氢检测剖面

排9井、排12井、排16井和排17井在碳氢检测剖面等属性剖面上均没有明显 AVO反映 (图5-59~图5-66),这与实钻结果也是吻合的。

图5-59 过排9井纵线P波剖面

图5-60 过排9井纵线碳氢检测剖面

图5-61 过排12井纵线P波剖面

图5-62 过排12井纵线碳氢检测剖面

图5-63 过排16井纵线P波剖面

图5-64 过排16井纵线碳氢检测剖面

图5-65 过排17井纵线P波剖面

图5-66 过排17井纵线碳氢检测剖面

2.叠后属性处理

当储层物性和充填在储层中的流体性质发生变化时,会造成地震反射系数、传播速度、振幅、频率等多种属性的变化。这些变化表现为波形、能量、频率、相位等一系列基于运动学、动力学的地震属性的变化。地震属性比地震剖面在检测储层或流体性质变化方面敏感得多,并且许多地震属性都是非线性的,它将增加预测的准确性。鉴于本区目前勘探存在的困难,有必要开展叠后属性处理工作,提高勘探的成功率。

(1)精细标定及构造解释

精细构造解释是进行属性提取工作的基础,只有如此才能保证所提取的地震属性能够准确反映所研究目的层段或储层的特征。需要做好以下三个方面的工作:

极性判断:首先进行正演分析对比法。采取正极性子波和负极性子波分别进行排2井自激自收正演,可以看到正极性子波正演结果中储层附近波组特征表现为上弱波峰,下强波峰,中间夹一个强波谷的特点 (图5-67)。而表现负极性子波正演结果中储层附近波组为两个相对弱的波峰夹一个相对强波谷的特征 (图5-68)。对照过排2井的地震剖面,可以发现地震剖面上储层处的地震响应特征与正极性子波正演结果一致 (图5-69)。其次采用能量判识方法——选择排2井靠近塔西河组下部的一套较厚的含砾细砂岩,厚度13m,地震资料可以分辨其顶底。其顶底分别对应地震的波峰和波谷。从反射系数曲线上可以看到顶部反射系数大于底部反射系数 (图5-70),所以顶部反射在地震资料反射中对应能量应该大于底部反射能量。从地震资料读取该反射层附近的能量,可以看到波谷能量最大在-1300附近,而波峰能量最大达到5000左右 (图5-71),从对应关系上看,波峰顶应该对应含砾细砂岩的顶,这只有在使用正极性子波条件下才能达到该条件,使合成记录道和地震道相对应。再其次采用正负子波标定对比法——从排2井正负子波合成记录对比标定剖面上 (图5-72)可以看到正极性子波与负极性子波在目的层段标定效果都不错,但在1.1~1.2s处正极性子波合成记录波组与地震波组更加匹配。最后采用多口井综合标定法——采用多口井标定对比,发现正极性子波标定结果与实际地震道对应效果良好。综合以上四种方法,判定该区地震资料为正极性。

图5-67 排2井正极性子波正演结果

图5-68 排2井负极性子波正演结果

层位及储层标定:本次研究对车排子地区已钻探井均进行了合成地震记录标定,标定采用如下原则——以井点附近地震道提取子波、利用VSP做为时深关系指导、以塔西河组及沙湾组底部反射为标志层,在此基础上进行细微的调整。通过标定认识到塔西河组底界以及沙湾组底界为连续强振幅波谷反射同相轴,全区可追踪,对应地震反射层为TN1t、TN1s,沙一段1砂组底部为较强连续振幅反射同相轴,全区基本可追踪,对应地震反层为 TN1s1。为方便层位解释,采用了波峰反射的解释作为控制层位 (图5-73)。

图5-69 排2井地震剖面正极性子波标定结果

图5-70 排2井塔西河组下部含砾细砂岩顶底反射系数对比

图5-71 排2井塔西河组下部含砾细砂岩顶底反射能量对比

图5-72 排2井正负极性子波标定结果对比

图5-73 排2井区标准层、控制层位、储层标定结果

由于排2井油层只有3.9m 厚,因此地震资料对其分辨能力及其在地震剖面上的对应关系需要精细标定。从声波时差曲线上计算得到,排2井油层砂岩平均速度2120m/s,泥岩平均速度2450~2600m/s,在油层顶为正反射系数,油层底为负反射系数,因地震资料为正极性资料,故而波谷对应油层顶界,波峰对应油层底界。由于地震资料视主频70Hz,以1/4波长产生调谐波为最大分辨率,最大分辨厚度应为9m。对于3.9m 的砂层无法区分,但由于排2井油层发育在泥岩段中,理论情况下只有砂体顶界面会产生地震反射,并且三维地震资料有效频宽大至10~110Hz,从而进一步提高了垂向分辨率,使得排2井砂层在地震剖面上有响应。因此得到结论:①排2井区三维地震资料,在沙一段1砂组对应的地震反射中,强振幅波谷反映了砂岩存在,并对应砂岩顶界,强波谷的横向变化反映了砂层的横向变化;②砂层顶界对应强振幅波谷,下部较强振幅波峰与强波谷相连,波峰与强波谷之间反映了多个砂层存在,砂层总厚度较大。

断层及层位解释:研究区内构造解释采用断裂和控制层位同时进行解释的方案,并对整个三维工区地震资料进行了解释。主要利用了时间切片、相干体、三维可视化等多种技术,理顺了断裂结构,落实了构造 (图5-74);编制了车排子地区排2井三维区塔西河组底界、沙一段1砂组底界、沙湾组底界、白垩系底界等4层构造图 (图5-75)。

图5-74 排2三维断裂系统图

图5-75 排2三维四层构造图

(2)地震属性提取技术研究

地震属性的提取方式有剖面提取属性和层面提取属性两种。剖面提取属性可以获得研究目标的纵向信息以及点与点之间横向变化情况。沿层提取属性获得的是各类属性沿界面横向变化的信息,常用来预测薄储层和与断层有关的隐蔽油气藏。各种不同属性分类都有对应的地质意义 (表5-4),用来指导工作中采用合理的属性提取方法。

表5-4 地震属性分类表

另外还有其他常用属性:

方差体属性:利用地震数据中相邻道之间地震信号的相关性,通过计算样点的方差值,揭示数据体中的不连续信息。其作用在于进行断层 、岩性识别 (大时窗利于分析大断层,小时窗利于分析岩性体、小断层)。

地震波吸收衰减:该现象是由岩石基质的固有黏弹性,包括颗粒之间和裂隙表面的内摩擦损耗、孔隙岩石内液体相对流动、局部饱和效应以及几何漫射等引起的。影响地震波吸收衰减的主要因素有岩石性质、岩石孔隙度和孔隙内流体成分等。当地震波在地下传播时,随着离震源的距离的增加,能量逐渐衰减。而一些特定的因素可能加速能量的吸收,如天然气的存在能引起高频段的地震波异常高的吸收率。在一定的时窗内,分析地震能量的吸收,作为频率的函数测量能量衰减的速度,可以检测储层的变化。对于裂缝性油藏,裂缝、溶孔以及含油气性都会引起储层的孔隙度、饱和度、层速度和地震振幅频率等属性的变化,从而引起地震吸收系数的变化。因此,可以利用地震能量吸收分析预测裂缝储层的发育情况。

工作中结合工区储层特征提取敏感地震属性共6种:以排2井钻遇油层为例 (图5-76),振幅类属性提取了均方根振幅、累加负振幅、平均波谷振幅;复地震道属性提取了瞬时频率、瞬时相位;频能统计类提取了弧线长度。另外提取了方差体、地震波吸收衰减等两种属性。

从地震资料与属性对比图 (图5-77)中可以看出,所提取的属性异常边界与地震资料同相轴波形、能量变化点相对应,可以说,所提取的属性是能够反映所研究的地质目标的。

图5-76 沿排2油层多种属性平面图

图5-77 沿排2油层多种属性异常边界与地震同相轴边界对比图

图5-78 沿排2油层平均波谷振幅属性分频段平面图

为更加深入研究频率、速度谱信息,还采用了分频段属性分析、时频分析、速度谱分析等技术手段。

分频段属性分析:从地震资料有效频段中按 10~30Hz、30~50Hz、50~70Hz、70~90Hz、90~110Hz共5种频段范围分别进行地 震 资 料 6 种 敏 感 属 性 提 取 试 验(图5-78)。通过对比分析,认识到该地震资料 50~70Hz是最佳的属性频段。由于50~70Hz地震资料的理论分辨厚度范围为8~11m,而工 区 中 钻 遇 油 层 厚 度 范 围 为2~5m,因此,所提取的各种属性中体现的异常并不反映砂层厚度概念,仅是地层物性、含流体性等变化的反映。

时频分析技术:为拓展和提高该区纵向(时间轴方向)频率属性研究的深度,针对有利地震资料频段50~70Hz范围,开展此项技术研究,期望能够发现油层段在时间轴方向存在有规律异常。工作中采用以下工作流程——首先从三维地震资料中抽取过井的二维测线,然后对其进行50~70Hz带通滤波,再对滤波结果求取瞬时频率属性,最后抽取过井点CDP处瞬时频率值与时间交汇得到成果图件,如图5-79。通过分析钻遇油层井油层位置频率特征及相邻井对应段的频率特征认识到时频变化没有规律,因此,该技术不能应用于该区储层研究。

速度谱分析:速度谱资料往往在油气分布处有异常反映,可以凭借该特征辅助判定油气的存在。为研究该区速度谱特征,在原有高精度速度谱基础上,针对目的层段,缩小速度扫描时窗,提高速度谱变化精细程度,期望能够发现有利规律。但速度谱资料在研究目的层段没有针对油层或可能储层的速度异常现象,因此该技术不适用于该区(图5-80)。

图5-79 排8及附近井储层时频分析图

图5-80 排2、排201井点处速度谱图

3.多井约束反演处理

(1)合成记录标定与子波求取

反演过程中的合成记录不同于层位解释时的合成记录,它的标定要求细节更加精细,合成记录道中每个同相轴都有地震道同相轴相对应,这样才能将地质和地震精确对应起来。

合成记录标定的过程是反射系数与子波褶积的过程,子波求取的过程是合成记录与反射系数反褶积的过程,两者是正反运算的有机整体。合成记录与地震子波是影响反演处理过程中的时深关系、初始波阻抗模型与波阻抗反演结果是否准确的重要因素,而一个高质量的合成记录与地震子波的获得是一个循环反馈过程:利用实际地震资料多道记录自相关统计的方法,在一个经验时深关系 (排2井 VSP速度)的控制下,先利用一个主频70Hz初始标准雷克子波 (实际地震资料的主频为70Hz)作最初的合成记录道,将此合成记录道与井旁地震道对比,做测井曲线与实际地震资料之间的时深关系校正,在校正后合成记录上选目的层段的合适的时窗提取子波,并用此子波重作合成记录,校正时深关系,如此反复,直到合成记录与实际地震资料在能量、相位、频率等方面都匹配程度很高时,认为所得到的合成记录与所提取的地震子波是合适的。

为保证合成记录标定的可靠程度,在完成单井标定后,提取标定速度与本区 VSP速度进行比较,从对比图 (如图5-81)中可以看到所有井的标定速度与 VSP速度一致性良好,这说明标定是可靠的。单井标定完成后,为保证标定结果在横向上一致,还需要进行多井横向标定。图5-82中可以 看 到 标 定结 果 在 横 向 上是一致 的,特别是排2井、排8井钻遇的储层情况与实际地质情况一致。

图5-81 各井标定速度与本区 VSP速度对比图

图5-82 排2、排8井连井标定剖面

(2)地质模型的建立

建立尽可能接近实际地层沉积情况的波阻抗约束模型,是减少反演最终结果多解性的十分重要的环节。建立波阻抗模型的过程实际上就是把地震界面信息与测井波阻抗信息正确结合起来的过程。地震资料包含着区域的构造信息,控制模型的横向变化;测井资料包含丰富的高、低频信息,控制模型的纵向阻抗变化关系,为波阻抗界面间的地层赋予合适的波阻抗信息。声波、密度测井资料在纵向上详细揭示了岩层的波阻抗变化细节,三维地震资料则在三维空间内记录了波阻抗界面的地震反射。测井资料在三维地震地质反射界面内合理内插外推的结合,为精确地反演出地层波阻抗数据提供了有效的先验约束模型。

地下沉积体的空间接触关系是十分复杂的,计算机无法一次确定各个层位之间的拓扑关系,因此建立地质框架是通过地质框架结构表按沉积体的沉积顺序,从下往上逐层定义各层与其他层的接触关系。由于本区存在着上超这种现象,因此在模型的建立过程中,必须在地质框架结构表中定义出来。通过合理的定义上下层位的接触关系,使建立的初始波阻抗模型 (图5-83)符合实际的地下沉积模式,沙一段1砂组表现为从北向南逐渐加厚的特征,2、3砂组则表现为基本厚度一致的特征。

图5-83 排2三维反演初始波阻抗模型图

(3)反演参数选择

针对不同地区的资料特点选择适合该区的反演参数是反演项目的质量保证。结合对该区基础资料及地质特征的认识,对稀疏脉冲反演中的多个敏感参数进行试验和选择,特别针对λ、子波影响、频带补偿、色标范围调试等四个方面。根据稀疏脉冲反演的目标函数可知,地震反射系数的稀疏和合成记录与原始地震道的残差最小这两项是相互矛盾的,这是由于在算法上,它遵循以下原则:λ值小,强调反射系数之和最小,即强调稀疏性,稀疏脉冲反演剖面细节少,分辨率低,残差大;否则反之。但是λ值太大,过分强调地震残差最小,一味地使合成记录与原始地震道吻合,结果使一些噪音也加到了反演剖面中,同时由于忽略了反射系数的稀疏,使得反演结果失去了波阻抗纵向变化的低频背景。因此,在反演参数调试中很重要的一步就是寻找一个合适的λ值,使得反演剖面既保持细节又不损失低频背景,这个工作是通过对井旁边合成记录与原始地震道吻合程度的控制来完成的。λ值可以用Jason软件反演的质量控制工具来确定。据此选定本次反演应用的λ值为16。

该区反演面积比较大,实际地震子波受施工因素及实际地层物性特征的影响在能量、相位、频率等特征上会有微小差异,针对这种情况,采用空间特征变化的空变子波进行反演 (图5-84),这有助于对地下地层特征进行正确反演,使得到的反演结果更加接近地下岩层的真实地质特征。保证空变子波在有效频带范围内基本稳定而略有差异,满足了该区反演的实际需要。

图5-84 排2三维空变子波图

针对本区储层,尤其是油层厚度薄的情况,采取了合理的高频补偿,补偿示意图见图5-85,这使得储层分辨率得到合理的提高。

图5-85 排2三维反演高频补偿示意图

色标调试是正确反映储层的关键步骤之一。本次反演采用了剖面色标调试和三维立体色标调试两种方法。剖面色标调试采用将油层顶底投在剖面上,调整色标,逐渐使色标变化范围与厚度一致,同时注重储层横向变化 (图5-86),最终得到色标调试结果。三维立体色标调试采用三维立体镂空方法,将钻遇油层范围镂空出,调整色标范围,使油层范围与实际钻探范围一致,并记录色标变化点 (图5-87)。结合两种色标调试方法,再精细调整,最终得到合理色标范围,并将油层颜色调整为醒目的黄红色。

图5-86 排2三维反演结果剖面色标调试图

图5-87 排2反演结果三维立体色标调试图

(4)稀疏脉冲反演处理

上述合理的时深关系、准确的层位断层数据、校正过的测井数据、空变子波及高精度的三维约束模型等是下一步反演处理的数据基础。在反演处理时首先选择多条二维连井骨架剖面进行了大量、反复的试验,采用严格的质量控制,检查并适当调整反演参数,最大程度地保障反演结果的可靠性。

考虑到反演出的波阻抗数据体仍然相对缺乏高频、低频信息,我们对其做了高低频信息补偿。将前面生成的含有丰富高频和低频信息的初始模型数据体与所得到的带陷阱的反演波阻抗结果做匹配合并,补偿其缺乏的频率成分。

约束地震反演过程,是所用测井数据、钻井、试采数据、构造层位解释数据、地震数据等各种数据紧密结合反演,并根据地质储层变化情况不断加深认识、反复修正,逐步完善反演结果的过程。每反演出一次结果,处理、解释人员就结合在一起,对效果进行反复对比、分析,根据掌握的地质和各井钻探,钻采资料提出下一次反演处理应改进的问题和措施,如此反复循环处理。通过以上处理技术和质量控制手段,得到最终反演数据体。

(5)反演效果分析

稀疏脉冲反演是测井约束地震反演技术中最为可靠的技术,在目前的储层描述与评价中得到了广泛的应用。该技术成功地将地震资料与高频丰富的测井资料相结合,充分发挥了地震在平面上连续采集、测井在纵向上分辨率高的优势,使点与面达到和谐的统一,把用于构造解释的常规地震资料的界面型剖面转换成可与钻井资料直接对比的岩层型测井剖面,给储层的追踪、描述以及预测工作带来了方便。其反演结果与地震资料所具有的振幅、频率、相位等特征都有较好的对应关系。

纵观反演结果,其具有以下显著特点:常规地震剖面,其波峰、波谷的极值点对应地层的分界面,是界面型剖面;而测井反演处理的资料,其波峰、波谷对应的是岩层,是岩层型界面,实质是层速度剖面。

反演结果如何,可以通过以下两点分析:

1)井点处反演的结果与井的吻合程度。反演结果是否与实钻井吻合,可以通过参与反演的井和未参与反演的井加以验证。反演结果与排2井、排8井等的钻井结果吻合的很好 (图5-88)。

2)反演结果符合地质变化规律。可以从反演资料同一层系地层波阻抗的变化是否均匀,反演结果的沉积模式是否与地质规律吻合等进行验证。如排201-排204连井反演剖面(图5-89)上,排201井钻遇沙湾组I砂层,排204井没钻到该砂体,这与实际地质情况是吻合的。

图5-88 过排2-排8井反演剖面

图5-89 过排201-排2-排204井反演剖面

Ⅶ 地震数据处理方法的适用读者

全书文字简练、条理清晰、图文并茂、实用性强。本书是石油院校有关专业的教材,也可作为石油科技人员自学或参考用书。

Ⅷ 三维地震资料的数字处理指什么

三维地震资料数字处理(简称三维处理)是指对野外三维地震采集的资料进行处理。它与二维地震资料常规处理的目的一样,就是要更有效地压制各种干扰波,增强有效波,提高分辨薄地层的能力,更真实更细腻地反映出地下的地质情况,为构造解释、岩性解释、储层研究及油田开发提供质量更好、精度更高的处理成果。
三维处理与二维处理相比有几个很突出的特色:
一是三维处理的数据量比二维大得多。一块100平方千米的三维资料的数据量约为2.4亿个。三维勘探面积一般要上百平方千米,大的要上千平方千米,处理的数据简直是海量。
二是三维处理中应用了许多算法上具有三维特色的技术手段。所以,三维处理后的成果反映的地下地质情况更可靠更真实。
三是三维处理后提供的处理成果是一个立体的三维数据体,这是三维处理后最有特色的处理成果。根据解释研究的需要,对这个数据体可以像切蛋糕一样任意切割,想怎么显示就怎么显示,也可以把这块数据体制成动画电影,像看电影一样边看边解释。所以,它提供的处理成果更丰富,更能满足地质解释需要。由于三维数据体是由纵向空间间隔和横向空间间隔基本一样的均匀网格组成,这样更有利于研究地下地层在空间上的变化规律,更有利于对构造、断层、圈闭等的精细解释。
四是利用三维处理成果能比较可靠地提取与地层或与油气有关的岩石性质和物理性质的参数,这为搞清地层特性和进行油气预测提供了极为有用的资料。
20世纪80年代以来,因为有了高速发展的计算机技术以及为解决复杂地质问题研究出了一批处理新技术、新方法,这就为三维勘探及三维处理的发展提供了硬、软件条件。从实践中看,三维勘探解决地下复杂地质问题的能力比较强,效果和效益也十分明显,所以,无论国内还是国外都十分重视加强三维勘探和三维处理。

经过三维处理后显示的两种成果实际上利用三维数据体可以显示几十种各式各样的成果

Ⅸ 地震数据处理方法 书讲的什么东西

地震数据处理(包括去噪、反褶积、动静校正、速度分析、叠加、偏移、反演、地震监测)的基础、方法、流程和参数选择等。

Ⅹ 地震勘探资料处理

地震勘探资料处理的任务是对原始资料进行压制干扰,提高信噪比与分辨率,提取地震参数等处理工作,为解释工作提供地下结构的剖面和各种岩性参数。地震勘探资料处理技术方法很多,新方法发展也很快,本节只对常规的处理方法及进展情况进行介绍。

1.校正和叠加处理

水平叠加是目前地震勘探中最常用的勘探方法。水平叠加资料处理核心是动校正、静校正和叠加。经过处理后,野外观测记录转换为供解释用的水平叠加时间剖面。在处理过程中适当选择速度参数可压制多次反射干扰和随机干扰,获得高质量的时间剖面。

(1)动校正处理

动校正是将炮检距不同的各道上来自同一界面同一点的反射波到达时间经正常时差校正,校正为共中心点处的回声时间,以保证在叠加时它们能实现同相叠加,形成反射波能量突出的叠加道。动校正处理中需使用速度参数,对于水平层状介质来说,如果选用的速度正确,反射时距曲线由双曲线能校正为直线。叠加时各道能同相叠加。使用的速度过大或过小都不能保证实现同相叠加。

(2)静校正处理

静校正是对表层因素的校正。表层低速带的速度十分低,深、浅层反射波的射线路径尽管在低速带以外的各地层中传播时各不相同,但在表层附近几乎都是近于垂直的。因此,静校正量的大小只与地面位置有关,即对于某一道而言,深、浅层反射波有相同的静校正量,所以称之为“静”校正。静校正分为野外静校正和剩余静校正两类。利用野外实测的表层资料直接进行的静校正称为野外静校正,又称基准面静校正。这种校正包括井深校正、地形校正和低速带校正。如果野外实测资料不很准确,则野外静校正之后仍残存着剩余的静校正量。提取表层影响的剩余静校正量并加以校正的过程称为剩余静校正。剩余静校正量不是从野外实测资料求得,而是直接利用地震记录提取。实践中往往利用统计的方法自动地计算剩余静校正量。

早期获取静校正量是通过在反射波法勘探的同一测线上,用小折射排列再做一次折射波法勘探。因为低速带底界面是一个良好的折射界面,用折射波法工作可以得到质量优良的折射波记录。用常规折射波解释方法求出低速带底界面深度和浅层速度,进而可求出静校正量。近年来发展起来的利用反射波法工作时在反射波记录上的初至折射波求出低速带底界面和静校正量。这种方法无须再进行一次小折射排列工作,因此工作效率高。

(3)叠加

经过动、静校正处理后,共中心点道集中各道反射记录时间已换算为从一个统一基准面计算的双程旅行时,可以进行叠加处理。常规叠加是将道集中经过动、静校正后的各道上序号相同的采样值取算术平均值,组成叠加道输出。每个共中心点道集输出一个叠加道。一条测线上所有叠加道的组合组成直观反映地下构造形态,可供解释使用的常规水平叠加时间剖面。叠加处理的方法很多,常规叠加是地震处理工作中最常使用的一种方法,其叠加公式为

普通物探

式中:y(j)为叠加结果(叠加道上第j个样值);gi(j)为叠加输入道集中第i道第j个样值;j为采样点序号;i为共深度点道集中记录道序号;n为道集中总道数;L为每道的总采样点个数。

上述动、静校正与叠加处理环节是相互影响的。通常,不可能一次就将动、静校正工作做好,往往需要反复迭代处理,经多次迭代后才能得到质量较高的输出剖面。

2.数字滤波处理

在地震资料数据处理中,数字滤波方法是利用有效波和干扰波之间频率和视速度方面的差异来压制干扰的,分别称为频率滤波和视速度滤波。频率滤波只需对单道数据进行运算,称为一维频率滤波。视速度滤波需要同时处理多道数据,故称为二维视速度滤波。滤波可利用电路实现,也可利用数字滤波技术通过数学运算实现。目前,室内处理已广泛采用数字滤波方法。

(1)一维滤波

为了突出有效波,先根据有效波和干扰波的频率范围差异,设计频率响应H(ƒ),然后进行反傅里叶变换,求得滤波系统的脉冲响应h(t),以h(t)对地震记录进行褶积,即可达到滤渡效果。当高频干扰严重时,为消除干扰,根据有效波和干扰波的频率特性设计低通滤波系统的频率响应。在一般条件下,既要压制高频干扰,也要压制低频干扰,这时可设计带通滤波器。

(2)二维滤波

地震波在地下传播,既有空间变量,也有时间的变量。进行二维滤波时,应根据勘探地区地震波传播特点,确定频率波数响应函数H(ƒ,k),其中ƒ为频率,k为波数(地面上单位距离内的波周数),然后由H(ƒ,k)的二维傅里叶反变换求出时间、空间域内的滤波响应函数h(t,x)。将地震记录作为输入信息ƒ(t,x)与二维响应函数h(t,x)进行二维褶积,可得到所需的二维滤波输出信息ƒ′(t,x)。

进行二维滤波必须找出有效波的频率差异和视速度差异,然后确定适当的区域D。如果有效波的视速度很高,而干扰波的视速度很低时,区域D可选成图5-15a的形状。即所谓扇形滤波。有效波视速度不高,但干扰波的视速度很高或很低,区域D可选为图5-15b所示形状。如果除了视速度差异外,还有频率差异,则区域D可分别选为图5-15c和d的形状。

图5-15 二维滤波的波数域

3.反滤波

地震波在地下传播过程中,高频部分常被吸收,使记录到的地震脉冲时间延长,并相互干涉造成波形畸变。为提高地震记录的分辨率,有必要设计一种滤波系统,使记录波形压缩成尖脉冲,只显示反射波的振幅及到时。这样的滤波系统称为反滤波。其数学运算称为反褶积。

反滤波仍然是一个滤波过程。

设x(t)是时间函数为h(t)的滤波器的输入,y(t)为输出,则有

y(t)=x(t)∗h(t) (5-10)

现设计一滤波器α(t),使得当y(t)作为其输入时,得到的输出一定是x(t),则α(t)就是h(t)的反滤波,此过程可用图5-16表示。

图5-16 尖脉冲的反滤波系统

地震勘探反滤波的主要任务是抵消大地滤波作用,其中包括地震记录道中各种装备对地震子波的滤波作用,从而提高纵向分辨率。某些规则干扰波的形成过程也看作是滤波过程。研究反滤波就是研究如何设计一个滤波器去抵消另一个滤波器的作用。通常有两种方法用来设计反滤波器,即确定性方法和统计方法。实际工作中,采用确定性方法设计反滤波器时,须事先已知大地滤波因子,在地震勘探中这一点往往难以做到,因此,在地震勘探中往往利用统计方法求取滤波因子。

提高纵向分辨率是地震勘探工作中的一项重要任务,其理想结果是地震子波被压缩成尖脉冲,地震记录变为反射系数序列。如能得到这一结果,就相当于完成了反演工作。目前,尽管存在不少反滤波方法,但实际应用效果往往并不理想。其原因是各种反滤波法都必须有若干假设条件,而这些假设条件往往不能准确给出,另外,大地的滤波作用十分复杂,到目前为止还未完全清楚,也就是说正演问题还未彻底解决,当然谈不上反演问题的彻底解决了。研究反滤波的一个努力方向是发展和应用其假设尽可能接近实际的反滤波方法;另一方面必须加强大地滤波机制的研究,随着正演问题的深入认识,反滤波方法才能得到进一步的发展。

4.偏移成像处理

偏移成像是提高地震资料横向分辨率的一种处理技术。偏移的目的就是将每种反射要素适当地归位到反射面位置上去。因此,偏移处理又称为再定位处理或偏移归位处理。

根据偏移处理在整个处理流程中的位置可分为叠前偏移、叠前部分偏移、叠后偏移和深度偏移四种类型。这几种偏移除在处理流程中的位置不同外,它们的目的、作用和解决问题的方式也有所不同。目前广泛使用的是叠后偏移。

(1)叠后偏移

叠后偏移在水平叠加之后进行。一般认为水平叠加剖面相当于自激自收记录剖面,故叠后偏移又称为自激自收记录剖面的偏移。

当反射层面倾斜时,其共中心点和反射点不在同一垂线上,如图5-17 二维滤波的波数域所示。S 为激发点,G 为接收点,M为共中心点,R为反射界面水平时的反射点,R′为反射界面倾斜时的反射点。这时记录剖面上的反射波同相轴和倾斜界面段之间,在位置、长度、倾角等方面都不一致,因而必须对同相轴进行校正,使之偏移到真实位置上来。较简单的方法是叠后偏移。在图5-18所示情况下,M为共中心点,R(x,z)是反射界面上到M点为法线方向的反射点,h为M点到界面的法线深度,即MR(x,z)

图5-17 共中心点与共反射点

图5-18 叠加偏移

普通物探

式中:H为R(x,z)点的垂直深度;x为R(x,z)点的横坐标;υ为平均速度。因此,M点的回声时间t0

普通物探

令t=2H/υ,

可得

普通物探

此式相当于(t,t′)坐标系中以M为圆心,以t0为半径的圆的方程式。就是说,反射点R(x,z)必然位于该圆弧轨迹上,在进行叠后偏移处理时,先在共中心点道M的记录上确定一个t0值,然后改变不同的x值,按上式可得出不同的t值,求得不同坐标点(t,t′),这些点必然位于此圆弧上。若再将记录上t0时刻所对应的振幅值α(t0)置放到圆弧的这些点上,如图5-19所示,这样就完成了一个t0值的偏移处理。然后改变 t0值,重复上述处理过程,直至t0到达该记录道的终了时间为止。依次改变共中心点M的位置,改变t0值,分别重复上述处理,就可得到一条地震测线的时间剖面的叠加偏移结果。

图5-19 t0值的偏移

(2)叠前偏移

在多次覆盖观测时,M为S1G1及S2G2的中心点,如图5-20所示。由于倾角较大,界面上的反射点R1和R2将不在一个点上,两道反射记录经动、静校正后也不同相。按水平叠加处理则效果不好,若要实现共反射点叠加,必须先偏移后再叠加,称为叠前偏移。

图5-20 反射倾角大时的共反射点

图5-21 偏移叠加

叠前偏移如图5-21所示。反射面倾角较大,S为激发点,G为任一接收点,R为界面上的任一反射点,则所记录到的反射波传播时间为

普通物探

式中:υ为平均速度。

对于某一接收点G,反射波到达的时间t为常数,则其传播距离υt亦为常数。若将反射点R变动,S、G两点固定,则R的轨迹为一椭圆的两焦点,它们之间的距离为L,且椭圆长轴等于υt/2,短轴等于

设R的坐标为(x,z),则此椭圆方程式为

普通物探

即如在t时刻G点接收到一反射信号,则此反射点必位于上式表示的椭圆轨迹上。这样,对于共激发点道集记录来说,如图5-22所示,可先分别取定时间t和速度υ,按上式计算并给出各自的椭圆。属于同一界面的反射波,其相应的椭圆簇的包络线R必为反射界面。

图5-22 共炮点反射波道集记录的椭圆法偏移

叠前偏移的基本思想,就是以共炮点道集所绘椭圆簇的包络来确定反射界面的几何位置,再利用不同炮点道集所绘椭圆簇的共切点来实现共反射点道集的叠加,因此偏移剖面上强信号的存在一般与反射界面的存在一致。

5.速度参数提取

速度参数的提取是地震数据处理中一个十分重要的环节。它的目的主要是为水平叠加、偏移等处理提供速度参数。

在沉积岩中,速度的空间分布规律取决于地层沉积顺序及岩性特点。沉积岩成层状分布决定了速度在剖面上的成层分布的特点,这一特点是使用地震勘探的有利前提。速度与深度和地质年代有关,一般随深度的增加而加大,速度垂直梯度的存在是速度剖面的一个重要特点。工作区地质构造及沉积岩相的变化,也会引起速度在水平方向的变化。一般来讲,速度的水平梯度不会很大,但断层、不整合和尖灭,都可能对速度的水平梯度产生较大的影响。

地震勘探中,根据获得速度的原始资料、计算方法、用途的不同以及对介质简化的不同,可以引出几种速度概念,而这些不同的速度又是随着地震勘探本身方法技术的发展而出现、变化和淘汰的。

(1)几种速度概念

1)层速度:在水平层状介质情况下,地层速度也成层分布,地震波在各层中的传播速度称为层速度,用υi表示,它是一个基本速度参数。其他速度大部分由υi导出,但在实际工作中,也可用其他速度来反求层速度。

2)平均速度:等于地震波在地层中垂直传播的总厚度除以总时间。用平均速度代替层状介质的速度后,就可把层状介质视为均匀介质,平均速度就是地震波垂直穿过该界面以上各层的总厚度与总传播时间之比,即

普通物探

式中:υi为各层层速度;ti为各层旅行时。

在层状介质情况下,只有炮检距为零时,平均速度才是精确的地震速度。平均速度仅适用于叠偏剖面的时深转换。

3)射线平均速度:地震波在层状介质中传播时,沿不同的射线路径有不同的传播速度。射线平均速度就是地震波沿射线传播的总路程与总时间之比,见图5-23所示。水平层状介质的射线平均速度公式为

普通物探

式中:P代表射线参数。

图5-23 射线平均速度示意图

射线平均速度既是射线参数P的函数,也是炮检距x的函数,并随炮检距的增大而增大。当炮检距等于零时,即P=0,射线平均速度与平均速度相等。射线平均速度较精确地描述了波在介质中的传播情况。但到目前为止,还没有专门测定射线平均速度的方法,而是用其他速度来代替。当讨论其他速度时,就以射线平均速度为标准来衡量它们的精度。

4)均方根速度:考虑到射线的折射效应,用均方根速度(υR)代替层状介质的速度,同样可以把层状介质视为均匀介质,地震波沿折射线传播看成沿直射线传播,其反射点时距曲线简化为双曲线,即

普通物探

式中

普通物探

为水平层状介质的均方根速度。当炮检距适中时,均方根速度是较精确的地震波速度。

5)等效速度:倾斜界面,均匀介质覆盖情况下,如果介质速度为υ,界面倾角为φ,倾斜界面均匀介质情况下等效速度为υφ

υφ=υ/cosφ

进而可以写出

普通物探

倾斜界面情况下,共中心点道集叠加时可能出现反射点分散和动校正不准确的问题。引入等效速度υφ,用υφ代替υ倾斜界面共中心点时距曲线就可以变成水平界面形式的共反射点时距曲线,用υφ按水平界面动校正公式,对倾斜界面的共中心点道集进行动校正,可以取得很好的叠加效果。

6)叠加速度:在水平界面均匀介质、倾斜界面均匀介质、覆盖为层状介质或连续介质情况下,均可将共中心点反射波时距曲线看作双曲线,用一个共同的公式来表示

普通物探

式中υa即为叠加速度。

对于不同的介质结构,它有更具体的意义,对倾斜界面均匀介质υ就是υφ,对水平层状介质就是υa或υR等。

(2)速度分析

速度分析的目的之一是为水平叠加、偏移等提供速度参数。地震记录是多道记录,多道信号的正常时差中隐含着地震波传播速度这一参数。如果能够从记录中准确拾取反射信号,得到正常时差,则求取速度参数不会有多大问题,但拾取反射信号十分困难,只能由计算机利用多道记录按多道平均的思想进行。假设各道真实反射信号的形状和振幅均相同,只是到达时间不同,且记录上的噪声是均值为零的白噪,则根据多道平均思想所得到的最佳估计信号ŝ(t),正好是多道记录上按精确的正常时差曲线取值后各道的平均值,也正好等于各道上的真实反射信号S(t)。能否得到多道信号的最佳估计S(t),使均方误差与Q达到最小,可利用Q与正常时差的关系不断调整各道正常时差以达到Q最小来进行速度分析。速度谱和速度扫描是最常用的速度分析方法。

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919