当前位置:首页 » 课程大全 » 差分放大电路课程设计

差分放大电路课程设计

发布时间: 2021-02-15 06:38:06

A. 关于差分放大电路用作输入级

比这样做我觉得有些傻,功率放大器的输入应该是一个高阻抗的电路,你应该选内用容场效应管作为输入级,这样对前置放大器而言可降低其带载负荷,提高其输出信号质量,场效应管构成原极跟随器。其后再选用放大器,由于你考虑提升低频信号的质量选用差动放大器是可以的,但这里的差动放大器是单输入、单输出结构,实际只有一个晶体管在作实际放大,另一个起到温度补偿作用,使放大器的工作点稳定,如果你采用差动放大器以一个基级输入,另一个集电极输出这样效果会更好。具体电路就不画了,这样说了你应该知道了。

B. 差分放大电路与基本放大电路相比较有什么区别

差分放来大电路对共模输入信号有很自强的抑制能力,对差模信号却没有多大的影响,因此差分放大电路一般做集成运算的输入级和中间级,可以抑制由外界条件的变化带给电路的影响,如温度噪声等。你可以去找一些集成电路看一下,第一级基本上都是差分放大。

C. 差分放大电路有什么作用

差分放大电路对共模输入信号有很强的抑制能力,对差模信号却没有多大的影响,因此差分放大电路一般做集成运算的输入级和中间级,可以抑制由外界条件的变化带给电路的影响,如温度噪声等。你可以去找一些集成电路看一下,第一级基本上都是差分放大。

所有放大电路都有一个明显的特点,就是它们只是放大某一个电势点,另一个电势点是默认接地的。而有时我们需要放大电压的两端电势没有一个接地的,那么这个时候,上述所有放大电路将不再适用。我文章一开头提到的采样步进电机电流,就是这种情况,这个时候就是差分放大电路登场的时间了。

在使用差分放大电路时,有一点需要特别地注意,不仅|k*(U1-U2)|<15(最好是小于13V左右,取得比较好的效果),而且Un与Up应该也要小于15v,否则放大不会工作在线性区,导致电路非正常工作。

(3)差分放大电路课程设计扩展阅读:

差放的外信号输入分差模和共模两种基本输入状态。当外信号加到两输入端子之间,使两个输入信号Vi1、Vi2的大小相等、极性相反时,称为差模输入状态。此时,外输入信号称为差模输入信号,以Vid表示,且有:

当外信号加到两输入端子与地之间,使Vi1、Vi2大小相等、极性相同时,称为共模输入状态,此时的外输入信号称为共模输入信号,以Vic表示,且 :

当输入信号使Vi1、Vi2的大小不对称时,输入信号可以看成是由差模信号Vid和共模信号Vic两部分组成,其中动态时分差模输入和共模输入两种状态。

差放有两个输入端子和两个输出端子,因此信号的输入和输出均有双端和单端两种方式。双端输入时,信号同时加到两输入端;单端输入时,信号加到一个输入端与地之间,另一个输入端接地。

双端输出时,信号取于两输出端之间;单端输出时,信号取于一个输出端到地之间。因此,差分放大电路有双端输入双端输出、单端输入双端输出、双端输入单端输出、单端输入单端输出四种应用方式。上面两个电路均为双端输入双端输出方式。

D. 模电课程设计题目

前置放大可以是差分放大电路或者共集放大电路,主要是增大输入电阻。
中级放大是一级或两级共射放大电路,用于电压放大。
后级放大可以是共集放大,用于减少输出电阻。

E. 电子课程设计

以实现频率波段的转换,R4及RP2的取值不变。取平衡电阻。

三角波—>正弦波变换电路的参数选择原则是:隔直电容C3、C4、C5要取得较大,因为输出频率很低,取,滤波电容视输出的波形而定,若含高次斜波成分较多,可取得较小,一般为几十皮法至0.1微法。RE2=100欧与RP4=100欧姆相并联,以减小差分放大器的线性区。差分放大器的几静态工作点可通过观测传输特性曲线,调整RP4及电阻R*确定。

4.5 总电路图

三角波-方波-正弦波函数发生器实验电路

先通过比较器产生方波,再通过积分器产生三角波,最后通过差分放大器形成正弦波。

5.电路的安装与调试
5.1 方波---三角波发生电路的安装与调试
1.按装方波——三角波产生电路

1. 把两块747集成块插入面包板,注意布局;

2. 分别把各电阻放入适当位置,尤其注意电位器的接法;

3. 按图接线,注意直流源的正负及接地端。

2.调试方波——三角波产生电路

1. 接入电源后,用示波器进行双踪观察;

2. 调节RP1,使三角波的幅值满足指标要求;

3. 调节RP2,微调波形的频率;

4. 观察示波器,各指标达到要求后进行下一部按装。

5.2 三角波---正弦波转换电路的安装与调试
1.按装三角波——正弦波变换电路

1. 在面包板上接入差分放大电路,注意三极管的各管脚的接线;

2. 搭生成直流源电路,注意R*的阻值选取;

3. 接入各电容及电位器,注意C6的选取;

4. 按图接线,注意直流源的正负及接地端。

2.调试三角波——正弦波变换电路

1. 接入直流源后,把C4 接地,利用万用表测试差分放大电路的静态工作点;

2. 测试V1、V2的电容值,当不相等时调节RP4使其相等;

3. 测试V3、V4的电容值,使其满足实验要求;

4. 在C4端接入信号源,利用示波器观察,逐渐增大输入电压,当输出波形刚好不失真时记入其最大不失真电压;

5.3 总电路的安装与调试
1. 把两部分的电路接好,进行整体测试、观察

2. 针对各阶段出现的问题,逐各排查校验,使其满足实验要求,即使正弦波的峰峰值大于1V。

5.4调试中遇到的问题及解决的方法
方波-三角波-正弦波函数发生器电路是由三级单元电路组成的,在装调多级电路时通常按照单元电路的先后顺序分级装调与级联。

1. 方波-三角波发生器的装调

由于比较器A1与积分器A2组成正反馈闭环电路,同时输出方波与三角波,这两个单元电路可以同时安装。需要注意的是,安装电位器RP1与RP2之前,要先将其调整到设计值,如设计举例题中,应先使RP1=10KΩ,RP2取(2.5-70)KΩ内的任一值,否则电路可能会不起振。只要电路接线正确,上电后,UO1的输出为方波,UO2的输出为三角波,微调RP1,使三角波的输出幅度满足设计指标要求有,调节RP2,则输出频率在对应波段内连续可变。

2.三角波---正弦波变换电路的装调

按照图3—75所示电路,装调三角波—正弦波变换电路,其中差分发大电路可利用课题三设计完成的电路。电路的 调试步骤如下。

(1)经电容 C4输入差摸信号电压Uid=50v,Fi =100Hz正弦波。调节Rp4及电阻R*,是传输特性曲线对称。在逐渐增大Uid。直到传输特性曲线形状入图3—73所示,记 下次时对应的 Uid即Uidm值。移去信号源,再将C4左段接地,测量差份放大器的 静态工作点I0 ,Uc1,Uc2,Uc3,Uc4.

(2) Rp3与C4连接,调节Rp3使三角波俄 输出幅度经Rp3等于Uidm值,这时Uo3的 输出波形应 接近 正弦波,调节C6大小可改善输出波形。如果Uo3的 波形出现如图3—76所示的 几种正弦波失真,则应调节和改善参数,产生是真的 原因及采取的措施有;

1)钟形失真 如图(a)所示,传输特性曲线的 线性区太宽,应减小Re2。

2)半波圆定或平顶失真 如图(b)所示,传输特性曲线对称性差,工作点Q偏上或偏下,应调整电阻R*.

F. 测量放大器的课程设计,满意再加五十分

1.2.1测量放大器
a. 差模电压放大倍数的测量:通过改变R2的阻值产生差模输入电压信号。
b. 非线性误差的测量:在AVD=100的条件下,分别测量VI为± 25mV、± 50mV、± 75mV、± 100mV时的输出电压,求出非线性误差的最大值。
c. KCMR的测量:在AVD=500、VI=0的条件下,分别测出VA=+15V、VB=0和 VA=0、VB=-15V时的共模电压放大倍数,取较大的一个计算KCMR。
d. 输出端噪声电压的测量:在R1=R2=R3=R4、VI=0的条件下,用示波器测量输出端噪声电压峰-峰值。
e. 通频带的测量:用信号变换放大器取代桥式测量电路,信号变换电路的输入信号由函数发生器或低频信号发生器给出。
f. 不测量电压放大器的输入阻抗,仅根据对电路的分析,判断它能否满足对输入阻抗的要求。
1.2.2测量直流稳压电源
交流电压变化+10%和-15%时,AVD和KCMR应保持不变。

2测量放大器的制作
2.1方案比较
2.1.1方案一:
如图一直接采用高精度OP放大器接成悬置电桥差动放大器:利用一个放大器将双端输入信号转变成单端输出,然后通过电阻与下一级反向比例放大器进行耦合,放大主要通过后一级的比例放大器获得,此电路的特点是简单,实现起来对结构工艺要求不高,但是其输入阻抗低,共模抑制比小。失调电压和失调电流等参数也受到放大器本身性能限制不易进一步提高,且无法抑制放大器本身的零漂及共模信号产生,虽然电路十分简单,元器件比较少,但仍将其舍弃。

图一
2.1.2方案二:
采用比较通用的仪用放大器,如图二所示,它是由运放A1A2按同相输入法组成第一级差分放大电路。运放A3组成第二级差分放大电路。在第一级电路中,v1v2分别加到A1和A2的同相端,R1和两个R2组成的反馈网络,引入了负反馈,两运放A1、A2的两输入端形成虚短和虚断,通过计算可以得到电路的电压增益,适当的选择电阻的阻值即可实现放大倍数的改变,并且可以将R1用一个适当阻值的电位器代替,通过调节电位器即可实现对放大倍数的控制。
该电路的优点是,电路简单,原件较少,A1和A1两个放大器组成差分放大电路,可以有效地抑制共模信号,并且为双端输出,其共模放大倍数理论为0,因而可以大大的提高共模抑制比,并且由于输入信号V1和V2都是A1、A2的
图二
同相端输入,根据虚短和虚断,流入放大器的电流为0所以输入电阻Ri,并且要求两运放的性能完全相同,这样,线路除具有差模.共模输入电阻大的特点外,两运放的共模增益、失调及其漂移产生的误差也相互抵消,但由于本实验要求放大倍数可以调节,通过电位器调节放大倍数,电位器的阻值无法准确获得,因而放大倍数无法准确得到,因而,本方案并不能完全满足实验要求,故舍弃本方案

2.1.3方案三:
如图三。同相并联式高阻抗测量放大器电路具有输入阻抗高、增益调节方便、漂移互相补偿、双端变单端以及输出不包括共模信号等优点。线路前级为同相差动放大结构,要求两运放的性能完全相同,这样,线路除具有差模、共模输人电阻大的特点外,两运放的共模增益、失调及其漂移产生的误差也相互抵消,因而不需精密匹配电阻。后级的作用是抑制共模信号,并将双端输出转变为单端放大输出,以适应接地负载的需要,后级的电阻精度则要求匹配。增益分配一般前级取高值,后级取低值。
该测量放大器由运放U1和U2按同相输入接法组成第一级差分放大电路,运放U3组成第二级差分放大电路,

图三
对测量电路的基本要求是:
a高输入阻抗,以抑制信号源与传输网络电阻不对称引入的误差。
b高共模抑制比,以抑制各种共模干扰引入的误差。
c高增益及宽的增益调节范围,以适应信号源电平的宽范围。
以上这些要求通常采用多运放组合的电路来满足,典型的组合方式有以下几种:同相串联式高阻测量放大器,同相并联式高阻测量放大器。
抑制共模信号传递的最简单方法是在基本的同相并联电路之后,再接一级差动运算放大器,它不仅能割断共模信号的传递,还将双端变单端,适应接地负载的需要,电路如图4所示。它具有输入阻抗高、增益调节方便、漂移相互补偿,以及输出不包含共模信号等优点,其代价是所用组件数目较多,共模抑制能力略有下降。
其中Ac12和CMRR12为A1和A2组成的前置级的理想闭环增益和共模抑制比,CMRR2为A3组成的输出级的共模抑制比。
方案三比的抑制共模能力强,故采取方案三.
方案三电路的理想闭环增益和共模抑制比分别为
Ac=R3/R2(1+2R1/Rw)
CMRR=(Ac12*CMRR3*CMRR12)/( Ac12*CMRR3+ CMRR12)
若 CMRR12>>Ac12*CMRR3
则有 CMRR=AC12*CMRR3
其中Ac12和CMRR12为A1和A2组成的前置级的理想闭环增益和共模抑制比,CMRR2为A3组成的输出级的共模抑制比
Op07作为常用的运放主要有以下特点:
a低的输入噪声电压幅度-0.35uvp-p(0.1hz-10hz)
b极低的输入失调电压-10uv
c极低的输入失调电压温漂-0.2uf/c
d具有长期的稳定性-0.2uv/mo
e低的输入偏置电流-+—1na
f高的共模抑制比-126db
g宽的共模输入电压范围-+-14v
h宽的电源电压范围-+-3v—+-22v
i可替代725,108A,741,AD510等电路

图片不好发,你把你邮箱告诉我我发给你

G. 双入单出恒流源式差分放大电路仿真分析,模拟电子技术实验课程设计...

Design Entry CIS内有很多IS模型,运放电路最合适你了,LM324,LM393。。。。

H. 差分放大电路

你这个问题实际上是:什么是“接地”
所谓接地,“地”就是参考回点(电平、电压的参考点)电平大了、小了答是以“地”作为参考“0”来说的。
双端输入时 信号是直接跨接在两个输入端,它本身已有信号“地”,而差分放大电路也有“地” 所以本质上的“地”就存在,没有接地仅仅是电路的表面现象。

I. 差分放大电路工作原理求解

这个是理想状态下 2个管子参数都一致情况(实际是没有的),静态工作时,电流和电压都相等,温度等造成影响也一样。

Ic2是负 ,是图上已经说了 输入的信号是差模信号号Ui1和Ui2 极性是 反向的 ,所以输出的信号反向

热点内容
武汉大学学生会辅导员寄语 发布:2021-03-16 21:44:16 浏览:612
七年级学生作文辅导学案 发布:2021-03-16 21:42:09 浏览:1
不屑弟高考成绩 发布:2021-03-16 21:40:59 浏览:754
大学毕业证会有成绩单 发布:2021-03-16 21:40:07 浏览:756
2017信阳学院辅导员招聘名单 发布:2021-03-16 21:40:02 浏览:800
查询重庆2018中考成绩查询 发布:2021-03-16 21:39:58 浏览:21
结业考试成绩怎么查询 发布:2021-03-16 21:28:40 浏览:679
14中医医师资格笔试考试成绩查分 发布:2021-03-16 21:28:39 浏览:655
名著赏析课程标准 发布:2021-03-16 21:27:57 浏览:881
北京大学商业领袖高端培训课程 发布:2021-03-16 21:27:41 浏览:919